• Title/Summary/Keyword: essential residue

Search Result 109, Processing Time 0.026 seconds

Control of Chemical Residues in Animal Foods - Problems and their Countermesures - (동물성 식품에 대한 안전성 확보의 문제점과 대책)

  • 이문한;신광순
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.3
    • /
    • pp.139-158
    • /
    • 1990
  • Heavy resposibility is placed on the veterinarian and the livestock and aquatic animal producers to observe the period for withdrawal of a drug prior to marketing to assure that illegal concentrations of drug residues in meat, milk, egg, fish and other animal foods do not occur. This is essential from a public health standpoint because levels of residues in excess of those legalIy permitted in edible tissues may produce injurious effects when consumed over a long time span. With greater use of animal drugs of chemicals required in production of food crops, livestock and aquatic animals, the possibility of human being continuously exposed to drug and chemical residues for a life time is unequivocally evident. Korean authorities concerned Ministry of Agriculture and Fishery and Ministry of Health and Social Affairs, have recenly made their own regulations to control chemical residues in beef, pork and chicken independently. Consequently, inspection for the chemical residues also have been or will be carried out by the two authorities concerned without any cooperations. It is undoubtfulI to have a single regulation and national residue program for control residual chemicals in animal foods and that the tolerance levels should be established in milk, egg, and freshwater fish. Besides, we have no complete standard methods to analyze the residual chemicals and the methods have not been evaluated their efficiency, precise, accuracy and limit of detection. In this paper, the analytical methods and national residue programs in foreign countries are introduced and discussed and the status of animal food safety in this country is also reviewed.

  • PDF

Chemical Modification of Glycolate Oxidase from Spinach by Diethyl Pyrocarbonate. Evidence of Essential Histidine for Enzyme Activity$^\dag$

  • Lee, Kun-Kook;Kim, Hong-Sun;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.280-285
    • /
    • 1987
  • FMN-dependent glycolate oxidase from spinach is inactivated by diethyl pyrocarbonate at pH 7.0. Inactivation of both apo- and holoenzyme by diethyl pyrocarbonate follows pseudo-first-order kinetics and first order with respect to the reagent. A series of difference spectra of inactivated and native enzymes show a single peak at 240 nm, indicating the modification of histidyl residues. No decrease in absorbance at around 280 nm due to formation of O-carbethoxytyrosine is observed. The rate of inactivation is dependent on pH, and the data for pH dependent rates implicate the involvement of a group with a pKa of 6.9. The activity lost by treatment with diethyl pyrocarbonate could be almost fully restored by incubation with 0.75M hydroxylamine. The reactivation by hydroxylamine and the pH dependence of inactivation are also consistent with that the inactivation is due to modification of histidyl residues. Although coenzyme FMN is without protective effect, the substrate glycolate, the product glyoxylate, and two competitive inhibitors, oxalate and oxalacetate, provide marked protection against the inactivation of the holoenzyme. These results suggest that the inactivation of the oxidase by diethyl pyrocarbonate occurs by modification of essential histidyl residue(s) at the active site.

The Specific Binding Mechanism of the Antimicrobial Peptide CopA3 to Caspases

  • Ho Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.243-249
    • /
    • 2023
  • We recently found that the insect-derived antimicrobial peptide CopA3 (LLCIALRKK) directly binds to and inhibits the proteolytic activation of caspases, which play essential roles in apoptotic processes. However, the mechanism of CopA3 binding to caspases remained unknown. Here, using recombinant GST-caspase-3 and -6 proteins, we investigated the mechanism by which CopA3 binds to caspases. We showed that replacement of cysteine in CopA3 with alanine caused a marked loss in its binding activity towards caspase-3 and -6. Exposure to DTT, a reducing agent, also diminished their interaction, suggesting that this cysteine plays an essential role in caspase binding. Experiments using deletion mutants of CopA3 showed that the last N-terminal leucine residue of CopA3 peptide is required for binding of CopA3 to caspases, and that C-terminal lysine and arginine residues also contribute to their interaction. These conclusions are supported by binding experiments employing direct addition of CopA3 deletion mutants to human colonocyte (HT29) extracts containing endogenous caspase-3 and -6 proteins. In summary, binding of CopA3 to caspases is dependent on a cysteine in the intermediate region of the CopA3 peptide and a leucine in the N-terminal region, but that both an arginine and two adjacent lysines in the C-terminal region of CopA3 also contribute. Collectively, these results provide insight into the interaction mechanism and the high selectivity of CopA3 for caspases.

Identification of Essential Amino acid Residues in Valine Dehydrogenase from Streptomyces albus

  • Hyun Chang-Gu;Kim Sang-Suk;Suh Joo-Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.50-53
    • /
    • 2006
  • Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase(ValDH) were highly conserved in the corresponding region of $NAD(P)^+$-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.

Chemical Modification of Cysteine Residues in Hafnia alvei Aspartase by NEM and DTNB

  • Shim, Joon-Bum;Kim, Jung-Sung;Yoon, Moon-Young
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.113-118
    • /
    • 1997
  • Aspartase from Hafnia alvei was inactivated by N-ethylmaleimide (NEM) and 5,5' -Dithiobis-(2-znitrobenzoic acid) (DTNB) following pseudo-first order kinetics. Their apparent reaction orders were 0.83 and 0.50 for NEM and DTNB modifications, respectively, indicating that inactivation was due to a sulfhydryl group in the active site of aspartase and participation of the sulfhydryl group in an essential step in the catalytic reaction. When aspartase was modified by DTNB, the enzyme activity was restored by dithiothreitol treatment, indicating that cysteine residuetsl islarel possibly at or near the active site. The pH-dependence of the inactivation rate by NEM suggested that an amino acid residue having pK value of 8.3 was involved in the inactivation. When aspartase was incubated with NEM and L-aspartate together, L-aspartate markedly protected the enzyme from inactivation by NEM, but the other reagents used did not.

  • PDF

An Algorithm for Predicting Binding Sites in Protein-Nucleic Acid Complexes

  • Han, Nam-Shik;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.17-25
    • /
    • 2003
  • Determining the binding sites in protein-nucleic acid complexes is essential to the complete understanding of protein-nucleic acid interactions and to the development of new drugs. We have developed a set of algorithms for analyzing protein-nucleic acid interactions and for predicting potential binding sites in protein-nucleic acid complexes. The algorithms were used to analyze the hydrogen-bonding interactions in protein-RNA and protein-DNA complexes. The analysis was done both at the atomic and residue level, and discovered several interesting interaction patterns and differences between the two types of nucleic acids. The interaction patterns were used for predicting potential binding sites in new protein-RNA complexes.

  • PDF

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans

  • Mo, Hongyu;Chen, Qian;Du, Juan;Tang, Lin;Qin, Fang;Miao, Bo;Wu, Xueling;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.464-469
    • /
    • 2011
  • The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.

A Study on the Reliability and Reproducibility of 571 CMP process (STI CMP 공정의 신뢰성 및 재현성에 관한 연구)

  • 정소영;서용진;김상용;이우선;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.25-28
    • /
    • 2001
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. Without applying the conventional complex reverse moat process, CMP(Chemical Mechanical Polishing) has established the Process simplification. However, STI-CMP process have various defects such as nitride residue, torn oxide defect, damage of silicon active region, etc. To solve this problem, in this paper, we discussed to determine the control limit of process, which can entirely remove oxide on nitride from the moat area of high density as reducing the damage of moat area and minimizing dishing effect in the large field area. We, also, evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions.

  • PDF

Inhibition of Purine Nucleoside Phosphorylase (PNP) in Micrococcus luteus by Phenylglyoxal

  • Choi, Hye-Seon
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.270-273
    • /
    • 1996
  • Micrococcus luteus purine nucleoside phosphorylase (PNP) has been purified and characterized. The physical and kinetic properties have been described previously. Chemical modification of the enzyme was attempted to gain insight on the active site. The enzyme was inactivated in a time-dependent manner by the arginine- specific modifying reagent phenylglyoxal. There was a linear relationship between the observed rate of inactivation and the phenylglyoxal concentration. At 30 $^{\circ}C$ the bimolecular rate constant for the modification was 0.015 $min^{-1}mM^{-1}$ in 50 mM $NaHCO_3$ buffer, pH 7.5. The plot of logk versus log phenylglyoxal concentration was a strainght line with a slope value of 0.9, indicating that modification of one arginine residue was needed to inactivate the enzyme. Preincubation with saturated solutions of substrates protected the enzyme from inhibition of phenylglyoxal, indicating that reactions with phenylglyoxal were directed at arginyl residues essential for the catalytic functioning of the enzyme.

  • PDF

Synthesis of Merocyanines Analogues Based on the Pyrazolin-5-one System

  • Park, Soo-Youl;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.569-572
    • /
    • 2003
  • The majority of dyes belong to the chromophoric class known as donor-acceptor systems. The essential structural feature of such systems is the presence of one or more electron donating groups conjugated to one or more electron withdrawing groups via an unsaturated bridge. The pyrazolin-5-one system is an effective electron acceptor residue, and can also act as a weak electron donor. In our experiments, the various symmetrical and unsymmetrical H-chromophores were synthesized in the indoxyl, imidazo[1,2-a]pyridin-2-one, pyrazolin-5-one, and pyridin-2,6-dione residues, resulting in cross-conjugated donor-acceptor systems. And the visible light absorption was then associated with the migration of electron density from the donor region of the molecule to the acceptor region. Also, it was useful to prepare related non-cross-conjugated donor acceptor chromophores by combining these residues with other electron donor or acceptor moieties. For convenience such chromophores are referred to as merocyanines.