• Title/Summary/Keyword: essential Oil

Search Result 1,205, Processing Time 0.024 seconds

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.

Determination of Hydraulic Parameters in Unconfined Sandy Aquifer in a Laboratory Scale (실내 자유면 사질 대수층의 수리상수 결정)

  • 김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.152-157
    • /
    • 1999
  • Oil leaked from underwound storage tanks and leachate from sanitary landfills have been known as contaminant sources of the high-quality groundwater resources. The mobility of contaminants in the aquifer largely depends on the groundwater flow and the determination of associated hydraulic parameters is essential for a proper remediation of contaminated grnundwater. This study aimed at determining an optimum set of hydraulic parameters for an unconfined sandy aquifer of a laboratory scale through comparison of various methods. Results showed that the specific yield obtained from gravity drainage experiment was an average of 0.20 with minor variations in aquifer depths. and the permeabilities obtained from Dupuit approximation and slug test gave similar values of 5.33 cm/min and 5.85 cm/min but the constant head method gave 0.17 cm/min, which is much ion than the other methods. This experimental evidence reveals that the permeability of the unconfined sandy aquifer could be accurately determined by Dupuit assumption or slug tut rather than by constant head method conducted for a disturbed separate soil column.

  • PDF

Current research on seed oil biosynthesis (식물 종자지방 합성대사 연구의 최근 동향)

  • Kim, Hyun Uk;Lee, Kyeong-Ryeol;Kim, Eun Ha;Jung, Su-Jin;Roh, Kyung Hee;Kang, Han Chul;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2014
  • Seed oils (triacylglycerols) of plants are used as a source of essential fatty acids and nutrition for human. In addition, triacylglycerols have been used as industrial raw materials and biofuels. Triacylglycerols are mainly accumulated in seeds by complicated biochemical pathways. Fatty acids are synthesized in the plastids and transported into the endoplasmic reticulum for synthesizing triacylglycerols. It is known for a long time that biosynthesis of triacylglycerols is performed by a de novo synthesis, the Kennedy pathway. However recent studies have revealed that phosphatidylcholine, a major component of cell membrane, plays a central role for triacylglycerols biosynthesis. Phosphatidylcholine is a key regulator determining the relative proportions of unsaturated fatty acids in seeds. It may be a major carrier for the fluxes of fatty acids from the plastid to the endoplasmic reticulum. This finding further suggests that studies of the functions of enzymes involved in the fluxes of fatty acids from phosphatidylcholine to triacylglycerols elucidate the specialized subdomains in the endoplasmic reticulum for triacylglycerols biosynthesis.

Inhibitory Effects of Illicium verum Hooker fil. Dichloromethane Fractions on Adipocyte Differentiation (팔각회향 dichloromethane 분획물에 의한 지방세포 분화 억제 효과)

  • Jeong, Hyun Young;Jeong, In Kyo;Kim, Nam Ju;Yun, Hee Jung;Park, Jung Ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.447-454
    • /
    • 2019
  • Fat accumulation in adipocytes occurs through the process of adipogenesis in which preadipocytes differentiate into adipocytes. Obesity is a metabolic disorder caused by excessive accumulation of fat in the body, which increases the incidence of cardiovascular diseases, hypertension, type 2 diabetes, hyperlipidemia, and various cancers. Recently, inhibition of adipocyte differentiation was shown to be a potential antiobesity strategy. In this study, the inhibitory effect of dichloromethane fractions from Illicium verum Hooker fil. water extract on the differentiation of 3T3-L1 preadipocytes to adipocytes was investigated. Dichloromethane fractions from I. verum Hooker fil. significantly inhibited adipocyte differentiation when applied during the adipocyte differentiation process, as assessed by measuring fat accumulation using Oil-red O staining. In addition, dichloromethane fractions from I. verum Hooker fil. reduced important adipogenic transcription factors, such as CCAAT/enhancer binding protein ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, and peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$). The expression of FAS and LPL, which are terminal differentiation markers of mature adipocytes, was also reduced in the 3T3-L1 adipocytes treated with dichloromethane fractions from I. verum Hooker fil. In addition, the treatment significantly inhibited mitotic clonal expansion, which is essential for adipocyte differentiation, by arresting the G1 phase of the cell cycle. Taken together, these results suggest that dichloromethane fractions from I. verum Hooker fil. may be a natural material with antiobesity effects.

On an Application of the Sound Massage for Safe Wet Shaving (안전한 습식면도를 위한 소리마사지 적용 연구)

  • Tian, Zhixing;Bae, Myung-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.605-609
    • /
    • 2022
  • Shaving for adult men is one of the essential requirements for life. For physiological reasons, most adult men have beards, and if men trim their beards and take good care of them, their appearance becomes cleaner. If a dull blade is used for a wet razor, or if an appropriate massage is not used, skin irritation may occur, resulting in shaving wounds. Therefore, the convenience and comfort of the razor are required as much as the skin becomes smooth after shaving. In this paper, a pre-shaving method of sound massage was proposed to reduce the irritation of wet shaving on the skin and increase the convenience of shaving. It softens the skin or secretes oil through non-face-to-face low-frequency speakers to increase skin gloss, making shaving smooth and safe. We recorded the sound of the wet shave state to determine the skin condition before and after the wet shave, and objectively compared and analyzed the effect with this sound spectrum. In other words, it can be seen from the experimental results that the sound massage before shaving reduces the friction between the razor and the skin and the skin and beard by -7.0 dB, improving the skin wound of the wet shave and achieving a refreshing shave.

Analysis of Hydrosol Components through Distillation Extraction of the Sunbigi Tree(Vitex rotundifolia L.f.) Fruit of the Wild Birch Tree Native to the Coast (해안가에 자생하는 순비기나무 열매의 증류추출을 통한 하이드로졸 성분분석)

  • Jung, Y.O.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.5-13
    • /
    • 2022
  • Sunbigi tree(Vitex rotundifolia L.f.), which grows wild in the southern part of Korea and along the coast of the West Sea, has a lot of useful value in terms of resource utilization. Since ancient times, it has been used as folk medicine or herbal medicine in the private sector. Although the leaves and stems have a strong scent, the fruit also has a strong scent, so there are some studies on extracting essential oil from the fruit of Sunbigi tree and analyzing the ingredients, but there are few studies on the fragrance component by extracting hydrosol. The reason is that the fruits are hard and it is difficult to identify the active ingredients contained in the general extraction method. Therefore, in this study, the results of analyzing the components contained in the fragrance of hydrosol obtained by extracting hard fruits at high temperature by different extraction methods are as follows. 1. The extraction condition with the highest flavonoid content was 30.57 mg/g with ethanol, followed by hot water extract at 18.26 mg/g and water extract at 9.69 mg/g with the lowest. 2. As a result of distillation extraction from the fruit of Sunbigi tree, the fragrance of hydrosol is 3-Methyl-2-butenoic acid, cyclobutyl ester, Eucalyptol, L-alpha-Terpineol, 1H-Cycloprop[e]azulen-7-ol, decahydro-1 ,1,7-trimethyl-4-methylene-, [1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)] were found to be many.

A Study of Energy Security Cooperation and its Integration Potential in South America through Brazilian Leadership (남미지역 에너지안보 협력과 통합 가능성 연구 : 브라질의 리더십 역할 고찰)

  • Ha, Sang-Sub
    • Journal of International Area Studies (JIAS)
    • /
    • v.15 no.1
    • /
    • pp.83-108
    • /
    • 2011
  • South America has vast energy resources with the renewable and non-renewable sources. However, many countries in the region are unable to guarantee adequate energy security both of energy supply and demand. Currently the possibility of energy security is high through regional energy integration based on the potential economic benefits. The difference of regulation system with the individual countries in the region impose strong barriers to integration process. Security of energy supply and its demand as well is fundamental issues in this region and regional energy cooperation is essential for getting rid of the insecurity of energy supplies. Despite of this problem, currently Latin American countries made a great effort to make multilateral energy security regime through projecting great energy infrastructure network(e.g. IIRSA) or mechanism especially in South America, which can give countries access to the region's reserve supplies by providing regulations and pricing mechanism with a shared energy market in this region. Brazil's active leading in the formulation of such movement toward energy security integration and participation of energy infrastructure network is good initiative to enforce this great energy security change. Politically and economically, Brazil's geographical position and the level of market size and oil and natural gas resources, in addition the leadership in renewable energy sources make it a sound candidate to take over the coordination of the secure integration of region's energy market. However, on the conditions of existing many obstacles such as, control of the output of the region's power plant, energy flows, the environmental matter within local community must be overcome to make more advance process and steps. Finally, to secure more institutional approach, this region must settle regional disputes resolution regime urgently.

Recent Research Trends in Antibacterial, Antifungal, and Antiviral Active Packaging (항균, 항진균 및 항바이러스 액티브 패키징의 최근 연구 동향)

  • Siyeon Park;Hani Ji;Jieun Choi;Seulgi Imm;Yoonjee Chang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Since the COVID-19 crisis, the use of disposable packaging materials and delivery services, which raise environmental and social issues with waste disposal, has significantly increased. Antimicrobial active packaging has emerged as a viable solution for extending the shelf-life of foods by minimizing microbial growth and decomposition. In this review article, we provide a comprehensive overview of current research trends in antimicrobial active film and coating published over the last five years. First, we introduced various polymer materials such as film and coating that are used in active packaging. Next, various types of antimicrobial (antibacterial, antifungal, and antiviral) packaging including essential oil, extracts, biological material, metal, and nanoparticles were introduced and their activities and mechanisms were discussed. Finally, the current challenges and prospects were discussed. Overall, this review provides insights into the recent advancements in antimicrobial active packaging research and highlights the potential of the technology to enhance food safety and quality.

Experimental Study on the Adsorption Characteristics of Methane Gas Considering Coalbed Depth in Coalbed Methane Reservoirs (석탄층 메탄가스 저류층에서 탄층 심도를 고려한 메탄가스의 흡착 특성에 관한 실험 연구)

  • Chayoung Song;Dongjin Lee;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.39-48
    • /
    • 2023
  • This study presents the experimental results to measure the adsorption amount of methane gas by coal according to the conditions of a coalbed methane (CBM) reservoir. Adsorbed gas to coal seam particles was measured under reservoir conditions (normal pressure ~ 1,200 psi pressure range, temperature range15 ~ 45℃) using coal samples obtained from random mines in Kalimantan Island, North Indonesia. The obtained amount of absolute adsorbed gas was applied to triangular with linear interpolation to calculate the maximum amount of adsorbed gas according to temperature and pressure change, at which no experiment was performed. As a result, it was revealed that the amount of adsorbed gas to coal particles increased as the pressure increased and temperature decreased, but the increase of the amount of adsorbed gas decreased at more than an appropriate depth(1,000 ft). In the cleat permeability and cleat porosity for each depth of the coal bed considering the effective stress, the cleat permeability was 28.86 ~ 46.81 md, and the cleat porosity was 0.83 ~ 0.98%. This means that the gas productivity varies significantly with the depth because the reduction of the permeability according to the depth in the coal seam is significant. Therefore, a coalbed depth should be considered essential when designing the spacing of production wells in a coalbed methane reservoir in further study.