DOI QR코드

DOI QR Code

Recent Research Trends in Antibacterial, Antifungal, and Antiviral Active Packaging

항균, 항진균 및 항바이러스 액티브 패키징의 최근 연구 동향

  • Siyeon Park (Department of Food and Nutrition, Kookmin University) ;
  • Hani Ji (Department of Food and Nutrition, Kookmin University) ;
  • Jieun Choi (Department of Food and Nutrition, Kookmin University) ;
  • Seulgi Imm (Department of Food and Nutrition, Kookmin University) ;
  • Yoonjee Chang (Department of Food and Nutrition, Kookmin University)
  • 박시연 (국민대학교 식품영양학과) ;
  • 지하니 (국민대학교 식품영양학과) ;
  • 최지은 (국민대학교 식품영양학과) ;
  • 임슬기 (국민대학교 식품영양학과) ;
  • 장윤지 (국민대학교 식품영양학과)
  • Received : 2023.03.08
  • Accepted : 2023.03.27
  • Published : 2023.04.30

Abstract

Since the COVID-19 crisis, the use of disposable packaging materials and delivery services, which raise environmental and social issues with waste disposal, has significantly increased. Antimicrobial active packaging has emerged as a viable solution for extending the shelf-life of foods by minimizing microbial growth and decomposition. In this review article, we provide a comprehensive overview of current research trends in antimicrobial active film and coating published over the last five years. First, we introduced various polymer materials such as film and coating that are used in active packaging. Next, various types of antimicrobial (antibacterial, antifungal, and antiviral) packaging including essential oil, extracts, biological material, metal, and nanoparticles were introduced and their activities and mechanisms were discussed. Finally, the current challenges and prospects were discussed. Overall, this review provides insights into the recent advancements in antimicrobial active packaging research and highlights the potential of the technology to enhance food safety and quality.

본 연구는 식품의 저장 수명을 연장하기 위하여 식품 포장재로 활용되는 항미생물 활성 액티브 패키징의 최신 연구 동향을 파악하기 위하여 수행되었다. 특히, 최근 5년간 발표된 항미생물 활성 필름 및 코팅 연구를 분석하였으며, 연구에서 활용한 고분자 소재와 항미생물 소재를 정리하였다. COVID-19 대유행으로 인한 플라스틱 오염 문제가 격화되면서 식품 포장재의 고분자 소재로는 바이오 기반의 분해성 소재가 주목받고 있으며, 분해성 소재에 항미생물 화합물을 혼입하여 기능적 특성을 부가한 액티브 필름 및 코팅 제제에 관한 연구가 활발하게 수행되었다. 항균 액티브 패키징 개발에 주요하게 활용된 소재는 정유, 추출물 등의 유기 화합물, TiO2, ZnO, AgNPs 등의 무기 화합물과 박테리오파지 및 엔도라이신 등의 생물 소재로 관찰되었다. 또한 주요하게 사용된 항진균 소재는 정유 등의 천연 화합물, 무기산(염) 및 유기산(염)을 포함하는 합성 유기계 화합물과 금속 및 나노입자 등의 무기화합물로 분류되었다. 한편, 항바이러스 소재로는 GTE, GSE 및 AITC 등의 유기 화합물 관련 연구만이 주로 관찰되었다. 동향 분석 결과, 항균 및 항진균 액티브 패키징의 효능 평가는 활발하게 수행되어 왔으나, 이들의 물리 화학적 특성 개선 연구가 미흡하여 산업화로 이어지는 것에 한계가 있어, 이에 대한 추가 연구가 필요하다고 판단된다. 또한 분해성 항바이러스 액티브 패키징에 대한 산업체에서의 수요가 증가할 것으로 예상되므로, 항바이러스 소재 발굴 및 패키징 적용을 위한 활발한 노력이 요구된다.

Keywords

Acknowledgement

이 성과는 2023년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(No. 2021R1F1A1058773). 또한, 본 연구는 2022년도 환경부의 재원으로 한국환경산업기술원(KEITI)의 지원을 받아 수행한 과제입니다.

References

  1. Yildirim, S., Rocker, B., Pettersen, M.K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., Coma, V. 2018. Active packaging applications for food. Compr. Rev. Food Sci. Food Saf. 17(1): 165-199.  https://doi.org/10.1111/1541-4337.12322
  2. Bastarrachea, L.J., Wong, D.E., Roman, M.J., Lin, Z., Goddard, J.M. 2015. Active packaging coatings. Coatings, 5(4): 771-791.  https://doi.org/10.3390/coatings5040771
  3. Mahmud, J., Sarmast, E., Shankar, S., Lacroix, M. 2022. Advantages of nanotechnology developments in active food packaging. Food Res. Int. 154: 111023. 
  4. Hue, V.T., Long, N.M. Linh, T.T. Anh, D.N., Khanh, H.N. Thuy, M.N.T. Dinh, T.C. 2022. Food poisoning: A case study in Vietnam. Case Stud. Chem. Environ. Eng. 7: 100295. 
  5. Wang, W., Kang, S., Zhou, W., Vikesland, P.J. 2023. Environmental routes of virus transmission and the application of nanomaterial-based sensors for virus detection. Environ, Sci.: Nano 10, 393. 
  6. Xue, W., Macleod, J., Blaxland, J.. 2023. The use of ozone technology to control microorganism growth, enhance food safety and extend shelf life: A promising food decontamination technology, Foods 12(4): 814. 
  7. Priyadarshi, R., Purohit, S.D., Roy, S., Ghosh, T., Rhim, J.W., Han, S.S. 2022. Antiviral biodegradable food packaging and edible coating materials in the COVID-19 era: A mini-review. Coatings, 12(5): 577. 
  8. Weligama Thuppahige, V.T., Moghaddam, L., Welsh, Z.G., Karim, A. 2023. Investigation of morphological, chemical, and thermal properties of biodegradable food packaging films synthesised by direct utilisation of cassava (monihot esculanta) bagasse. Polymers, 15(3): 767. 
  9. Guimaraes, A., Abrunhosa, L., Pastrana, L.M., Cerqueira, M.A. 2018. Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Compr. Rev. Food Sci. Food Saf. 17(3): 594-614.  https://doi.org/10.1111/1541-4337.12345
  10. John, A., Cresnar, K.P., Bikiaris, D.N., Zemljic, L.F. 2023. Colloidal solutions as advanced coatings for active packaging development: Focus on PLA systems. Polymers, 15(2): 273. 
  11. Jakubowska, E., Gierszewska, M., Szydlowska-Czerniak, A., Nowaczyk, J., Olewnik-Kruszkowska, E. 2023. Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chem. 399:133934. 
  12. Wei, X., Guo, G., Gong, C., Gou, M., Qian, Z.Y. 2011. Biodegradable polymers: research and applications. In: A handbook of applied biopolymer technology: synthesis, degradation and applications. Ed. Sharma, S.K. and Mudhoo, A. UK: The Royal Society of Chemistry, pp. 365-387. 
  13. Pawar, P.P., Purwar, A.H. 2013. Biodegradable polymers in food packaging. Am. J. Eng. Res. 2(5): 151-164. 
  14. Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D.N., Karbancioglu-Guler, F., Capanoglu, E. 2020. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20): 4711. 
  15. Choi, I., Chang, Y., Kim, S.Y., Han, J. 2021. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 346: 128883. 
  16. Bhat G, Kandagor V. 2014. Synthetic polymer fibers and their processing requirements. In Advances in Filament Yarn Spinning of Textiles and Polymers, Woodhead Publishing, pp. 3-30. 
  17. Muriel-Galet, V., Cran, M.J., Bigger, S.W., Hernandez-Munoz, P., Gavara, R. 2015. Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. J. Food Eng. 149: 9-16.  https://doi.org/10.1016/j.jfoodeng.2014.10.007
  18. Scalenghe, R. 2018. Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4(12): e00941. 
  19. Bioplastics, E. 2019. Bioplastics Market Development Update 2019. European Bioplastics, Berlin, Germany, pp. 3-30. 
  20. Rahman, M.H., Bhoi, P.R. 2021. An overview of nonbiodegradable bioplastics. J. Cleaner Prod. 294: 126218. 
  21. RameshKumar, S., Shaiju, P., O'Connor, K.E. 2020. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Curr. Opin. Green and Sustainable Chem. 21: 75-81.  https://doi.org/10.1016/j.cogsc.2019.12.005
  22. Ezati, P., Riahi, Z., Rhim, J.W. 2022. CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocolloids, 122: 107104. 
  23. Liu, Z., Lin, D., Shen, R., Zhang, R., Liu, L., Yang, X. 2021. Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packag. Shelf Life, 29: 100700. 
  24. Baek, J.H., Lee, S.Y., Oh, S.W. 2021. Enhancing safety and quality of shrimp by nanoparticles of sodium alginate-based edible coating containing grapefruit seed extract. Int. J. Biol. Macromol, 189: 84-90.  https://doi.org/10.1016/j.ijbiomac.2021.08.118
  25. Chollakup, R., Kongtud, W., Sukatta, U., Premchookiat, M., Piriyasatits, K., Nimitkeatkai, H., Jarerat, A. 2021. Eco-friendly rice straw paper coated with longan (dimocarpus longan) peel extract as bio-based and antibacterial packaging. Polymers, 13(18): 3096. 
  26. Salama, H.E., Abdel Aziz, M.S., Sabaa, M.W. 2019. Development of antibacterial carboxymethyl cellulose/chitosan biguanidine hydrochloride edible films activated with frankincense essential oil. Int. J. Biol. Macromol. 139: 1162-1167.  https://doi.org/10.1016/j.ijbiomac.2019.08.104
  27. Phan, D.N., Khan, M.Q., Nguyen, V.C., Vu-Manh, H., Dao, A.T., Thanh Thao, P., Nguyen, N.M., Le, V.T., Ullah, A., Khatri, M., Kim, I.S. 2022. Investigation of mechanical, chemical, and antibacterial properties of electrospun cellulose-based scaffolds containing orange essential oil and silver nanoparticles. Polymers. 14(1): 85. 
  28. Babapour, H., Jalali, H., Mohammadi Nafchi, A. 2021. The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films. Food Sci. Nutr. 9(7): 3893-3905.  https://doi.org/10.1002/fsn3.2371
  29. He, Y., Li, H., Fei, X., Peng, L. 2021. Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydr. Polym. 252: 117156. 
  30. Chowdhury, S., Teoh, Y.L., Ong, K.M., Rafflisman Zaidi, N.S., Mah, S.K. 2020. Poly(vinyl) alcohol crosslinked composite packaging film containing gold nanoparticles on shelf life extension of banana. Food Packag. Shelf Life. 24: 100463. 
  31. Priyadarshi, R., Kim, H.J., Rhim, J.W. 2021. Effect of sulfur nanoparticles on properties of alginate-based films for active food packaging applications. Food Hydrocolloids, 110: 106155. 
  32. Choi, I., Yoo, D.S., Chang, Y., Kim, S.Y., Han, J. 2021. Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chem. 346: 128883. 
  33. Kim, S., Chang, Y. 2022. Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell. Food Res. Int. 162: 111971. 
  34. Oufensou, S., Ul Hassan, Z., Balmas, V., Jaoua, S., Migheli, Q. 2023. Perfume guns: Potential of yeast volatile organic compounds in the biological control of mycotoxin-producing fungi. Toxins. 15(1): 45. 
  35. Van Long, N.N., Joly, C., Dantigny, P. 2016. Active packaging with antifungal activities. Int. J. Food Microbiol. 220: 73-90.  https://doi.org/10.1016/j.ijfoodmicro.2016.01.001
  36. Nazzaro, F., Fratianni, F., Coppola, R., De Feo, V. 2017. Essential oils and antifungal activity. Pharm. 10(4): 86. 
  37. Chein, S.H., Sadiq, M.B., Anal, A.K. 2019. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process. Preserv. 43(12): e14235. 
  38. Fernandes, F.G., Grisi, C. V. B., da Costa Araujo, R., Botrel, D. A., Sousa, S. 2022. Active cellulose acetate-oregano essential oil films to conservation of hamburger buns: Antifungal, analysed sensorial and mechanical properties. Packag. Technol. Sci. 35: 175-182.  https://doi.org/10.1002/pts.2618
  39. Park, M.A., Chang, Y., Choi, I., Bai, J.W., J., Na, J.H., Han, J. 2018. Development of a comprehensive biological hazard-proof packaging film with insect-repellent, antibacterial, and antifungal activities. J. Food Sci. 83(12): 3035-3043.  https://doi.org/10.1111/1750-3841.14397
  40. Suwanamornlert, P., Kerddonfag, N., Sane, A., Chinsirikul, W., Zhou, W., Chonhenchob, V. 2020. Poly(lactic acid)/poly (butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf Life, 25: 100515. 
  41. Cruz-Romero, M.C., Murphy, T., Morris, M., Cummins, E., Kerry, J.P. 2013. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control, 34(2): 393-397.  https://doi.org/10.1016/j.foodcont.2013.04.042
  42. Guimaraes, JER., de la Fuente, B., Perez-Gago, M.B., Andradas, C., Carbo, R., Mattiuz, B.H., Palou, L. 2019. Antifungal activity of GRAS salts against Lasiodiplodia theobromae in vitro and as ingredients of hydroxypropyl methylcellulose-lipid composite edible coatings to control Diplodia stem-end rot and maintain postharvest quality of citrus fruit. Int. J. Food Microbiol. 301: 9-18.  https://doi.org/10.1016/j.ijfoodmicro.2019.04.008
  43. Kowalczyk, D., Kordowska-Wiater, M., Zlotek, U., Skrzypek, T. 2018. Antifungal resistance and physicochemical attributes of apricots coated with potassium sorbate-added carboxymethyl cellulose-based emulsion. Int. J. Food Sci. Technol. 53(3): 728-734.  https://doi.org/10.1111/ijfs.13648
  44. Wangprasertkul, J., Siriwattanapong, R., Harnkarnsujarit, N. 2021. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control, 123: 107763. 
  45. Erazo, A., Mosquera, S.A., Rodriguez-Paez, J.E. 2019. Synthesis of ZnO nanoparticles with different morphology: Study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Mater. Chem. Phys. 234: 172-184.  https://doi.org/10.1016/j.matchemphys.2019.05.075
  46. Francis, D.V., Thaliyakattil, S., Cherian, L., Sood, N., Gokhale, T. 2022. Metallic nanoparticle integrated ternary polymer blend of PVA/Starch/Glycerol: A promising antimicrobial food packaging material. Polymers, 14(7): 1379. 
  47. Sahraee, S., Milani, J.M., Ghanbarzadeh, B., Hamishehkar, H. 2020. Development of emulsion films based on bovine gelatin-nano chitin-nano ZnO for cake packaging. Food Sci. Nutr. 8(2): 1303-12.  https://doi.org/10.1002/fsn3.1424
  48. Gurunathan, S., Qasim, M., Choi, Y., Do, J.T., Park, C., Hong, K., Kim, J.H., Song, H. 2020. Antiviral potential of nanoparticles-can nanoparticles fight against coronaviruses? Nanomater. 10(9): 1645. 
  49. Melk, M.M., El-Hawary, S.S., Melek, F.R., Saleh, D.O., Ali, O.M., El Raey, M.A., Selim, N.M. 2021. Antiviral activity of zinc oxide nanoparticles mediated by Plumbago indica L. Extract Against Herpes Simplex Virus Type 1 (HSV-1). Int. J. Nanomed. 16: 8221-33.  https://doi.org/10.2147/IJN.S339404
  50. Boldogkoi, Z., Csabai, Z., Tombacz, D., Janovak, L., Balassa, L., Deak, A., Toth, P.S., Janaky, C., Duda, E., Dekany, I. 2021. Visible light-generated antiviral effect on plasmonic Ag-TiO2-based reactive nanocomposite thin film. Front. Bioeng. Biotechnol. 9: 709462. 
  51. Delumeau, L.V., Asgarimoghaddam, H., Alkie, T., Jones, A.J.B., Lum, S., Mistry, K., Aucoin, M.G., DeWitte-Orr, S., Musselman, K.P. 2021. Effectiveness of antiviral metal and metal oxide thin-film coatings against human coronavirus 229E. APL Mater. 9(11): 111114. 
  52. Fabra, M.J., Falco, I., Randazzo, W., Sanchez, G., Lopez-Rubio, A. 2018. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocolloids, 81: 96-103.  https://doi.org/10.1016/j.foodhyd.2018.02.026
  53. Alara, O.R., Abdurahman, N.H., Ukaegbu, C.I. 2021. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 4: 200-14.  https://doi.org/10.1016/j.crfs.2021.03.011
  54. Srinivasan, V., Brognaro, H., Prabhu, P.R., de Souza, E.E., Gunther, S., Reinke, P.Y., Lane, T.J., Ginn. H., Han, H., Ewert, W. 2022. Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Commun. Biol. 5(1): 805. 
  55. Wu, Y.H., Zhang, B.Y., Qiu, L.P., Guan, R.F., Ye, Z.H., Yu, X.P. 2017. Structure properties and mechanisms of action of naturally originated phenolic acids and their derivatives against human viral infections. Curr. Med. Chem. 24(38): 4279-302.  https://doi.org/10.2174/0929867324666170815102917
  56. Rakowska PD, Tiddia M, Faruqui N, Bankier C, Pei Y, Pollard AJ, Zhang J, Gilmore IS. 2021. Antiviral surfaces and coatings and their mechanisms of action. Communications Materials, 2(1): 53. 
  57. Gurler, N. 2023. Development of chitosan/gelatin/starch composite edible films incorporated with pineapple peel extract and aloe vera gel: Mechanical, physical, antibacterial, antioxidant, and sensorial analysis. Polym. Eng. Sci. 63(2): 426-40.  https://doi.org/10.1002/pen.26217
  58. Priyadarshi, R., Kim, S.M., Rhim, J.W. 2021. Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustainable Mater. Technol. 29: e00325. 
  59. Prakash, J., Cho, J., Mishra, Y.K. 2022. Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread. Micro Nano Eng. 14: 100100. 
  60. Fernandes, F.G., Grisi, C.V.B., da Costa Araujo, R., Botrel, D.A., de Sousa, S. 2022. Active cellulose acetate-oregano essential oil films to conservation of hamburger buns: Antifungal, analysed sensorial and mechanical properties. Packag. Technol. Sci. 35(2): 175-82.  https://doi.org/10.1002/pts.2618
  61. Srisa, A., Harnkarnsujarit, N. 2020. Antifungal films from trans-cinnamaldehyde incorporated poly (lactic acid) and poly (butylene adipate-co-terephthalate) for bread packaging. Food Chem. 333: 127537. 
  62. de Castro e Silva, P., Pereira, L.A.S., Lago, A.M.T., Valquiria, M., de Rezende, E.M., Carvalho, G.R., Oliveira, J.E., Marconcini, J.M. 2019. Physical-mechanical and antifungal properties of pectin nanocomposites/neem oil nanoemulsion for seed coating. Food Biophys. 14: 456-66.  https://doi.org/10.1007/s11483-019-09592-0
  63. Fasihnia, S.H., Peighambardoust, S.H., Peighambardoust, S.J., Oromiehie, A. 2018. Development of novel active poly-propylene based packaging films containing different concentrations of sorbic acid. Food Packag. Shelf Life, 18: 87-94.  https://doi.org/10.1016/j.fpsl.2018.10.001
  64. Da Rocha, M., Prietto, L., de Souza, M.M., Furlong, E.B., Prentice, C. 2018. Effect of organic acids on physical-mechanical and antifungicidal properties of anchovy protein films. J. Aquat. Food Prod. Technol. 27(3): 316-326.  https://doi.org/10.1080/10498850.2018.1433736
  65. Ghorbani, H.R., Alizadeh, V., Mehr, F.P., Jafarpourgolroudbary, H., Erfan, K., Yeganeh, S.S. 2018. Preparation of polyurethane/CuO coating film and the study of antifungal activity. Prog. Org. Coat. 123: 322-325.  https://doi.org/10.1016/j.porgcoat.2018.05.021
  66. Duan N, Li Q, Meng X, Wang Z, Wu S. 2021. Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation. Food Chem. 364: 130441. 
  67. Vieira, A.C.F., de Matos Fonseca, J., Menezes, N.M.C., Monteiro, A.R., Valencia, G.A. 2020. Active coatings based on hydroxypropyl methylcellulose and silver nanoparticles to extend the papaya (Carica papaya L.) shelf life. Int. J. Biol. Macromol, 164: 489-498.  https://doi.org/10.1016/j.ijbiomac.2020.07.130
  68. Falco, I., Flores-Meraz, P.L., Randazzo, W., Sanchez, G., Lopez-Rubio, A., Fabra, M.J.. 2019. Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocolloids, 87: 611-618.  https://doi.org/10.1016/j.foodhyd.2018.08.055
  69. Amankwaah, C., Li, J., Lee, J., Pascall, M.A. 2020. Development of antiviral and bacteriostatic chitosan-based food packaging material with grape seed extract for murine norovirus, Escherichia coli and Listeria innocua control. Food Sci. Nutr. 8(11): 6174-6181.  https://doi.org/10.1002/fsn3.1910
  70. Ordon, M., Zdanowicz, M., Nawrotek, P., Stachurska, X., Mizielinska, M. 2021. Polyethylene films containing plant extracts in the polymer matrix as antibacterial and antiviral materials. Int. J. Mol. Sci. 22(24): 13438. 
  71. Sharif, N., Falco, I., Martinez-Abad, A., Sanchez, G., Lopez-Rubio, A., Fabra, M.J. 2021. On the use of persian gum for the development of antiviral edible coatings against murine norovirus of interest in blueberries. Polymers, 13(2): 224.