• Title/Summary/Keyword: eshelby

Search Result 60, Processing Time 0.023 seconds

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

Numerical Analysis of Reinforcement Effect with Grouting Method around Rail Tunnel (철도터널 주변의 그라우팅 지반강화에 대한 수치모델기법)

  • Bang Choon seok;Lee Jun S.;Lee hee up;Go Dong choon
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.579-584
    • /
    • 2003
  • In this study, anisotopic yield function is proposed for the numerical analysis of reinforced tunnel ground with grouting. For this, material properties of the reinforced ground both by equilibrium as well as kinematic condition along the interface and by the mean field theory of Eshelby (1957) and Zhao (1990) are compared with each other and, as a result, the advantage/disadvantage of the proposed models are summarized. Finally, reinforced ground around tunnel with grouting is analyzed numerically. A new anisotropic yield function model is shown to be more reliable than the previous one and the predicted result is agreeable with the experimental data available.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.

HIGHER ORDER SINGULARITIES AND THEIR ENERGETICS IN ELASTIC-PLASTIC FRACTURE (탄소성 균열 문제에서 고차응력특이성과 에너지론)

  • Jun, In-Su;Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.384-388
    • /
    • 2001
  • The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elasticplastic fracture are investigated. Numerical examples are presented for illustration.

  • PDF

Damage Mechanics in Particle or short-Fiber Reinforced Composite (분산형 복합재료의 손상 메커니즘)

  • 조영태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • In particle or short-fiber reinforced composites. cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with the load carrying capacity of intact and broken ellipsoidal inhomogeneities embedded in an infinite body and a damage theory of particle or short-fiber reinforce composites. The average stress in the inhomogeneity represents its load carrying capacity. and the difference between the average stresses of the intact t and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Micro/nano analysis model for prediction of mechanical properties of the nanocomposite considering nano-particle size (나노입자 크기를 고려한 나노복합체의 역학적 특성 예측을 위한 마이크로/나노 해석 모델)

  • Kim, Bong-Rae;Yang, Beom-Joo;Lee, Haeng-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.116-118
    • /
    • 2011
  • 일반적으로 나노입자의 크기는 나노복합체의 역학적 특성에 상당한 영향을 미친다. 이에 본 연구에서는 나노입자 크기를 고려한 나노복합체 재료 구성모델 (Kim et al., 2011)을 소개하고자 한다. Kim et al. (2011)에 의해서 나노입자 크기효과를 위한 Size-dependent Eshelby tensor가 미세역학 모델에 적용되었으며, 나노스케일 해석과 함께 다양한 수치해석을 수행하였다. 특히, 본 연구에서는 이를 활용하여 $SiO_2$/Epoxy 나노복합체의 역학적 특성을 예측해 보았다.

  • PDF

Aeroelastic behavior of nano-composite beam-plates with double delaminations

  • Mousavi, S.B.;Yazdi, Ali A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.653-661
    • /
    • 2019
  • In this paper aeroelastic behavior of 3-phase nano-composite beam-plate with double delaminations is investigated. It is tried to study the effect of carbon nano-tubes (CNTs) on critical flutter pressure of reinforced damaged nano-composite structures. In this case, the CNTs are appending to the polymer matrix uniformly. The Eshelby-Mori-Tanaka model is used to obtain the effective material properties of 3-phase nano-composite beam-plate. To investigate the aeroelastic behavior of delaminated beam-plate subjected to supersonic flow, it is assumed that the damaged segments are forced to vibrate together. The boundary conditions and auxiliary conditions at edges of delaminated segments are used to predict critical flutter pressure. The influence of CNTs and different delamination parameters such as delamination length, axial position and its position through thickness are investigated on critical flutter pressure.

A Theoretical Comparison of Two Possible Shape Memory Processes in Shape Memory Alloy Reinforced Metal Matrix Composite

  • Lee Jae Kon;Kim Gi Dae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1460-1468
    • /
    • 2005
  • Two possible shape memory processes, austenite to detwinned martensite transformation and twinned martensite to detwinned martensite transformation of a shape memory alloy have been modeled and examined. Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used for modeling of the shape memory processes of TiNi shape memory alloy reinforced aluminum matrix composite. The shape memory amount of shape memory alloy, plastic strain and residual stress in the matrix are computed and compared for the two processes. It is shown that the shape memory amount shows differences in a small prestrain region, but the plastic strain and the residual stress in the matrix show differences in the whole prestrain region. The shape memory process with initially martensitic state of the shape memory alloy would be favorable to the increase in the yield stress of the composite owing to the large compressive residual stress and plastic strain in the matrix.

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF

Study on the Coefficient of Thermal Expansion for Composites Containing 3-Dimensional Ellipsoidal Inclusions (3차원적 타원 형태의 충전제를 함유하는 복합체의 열팽창 계수 연구)

  • Lee, Kee-Yoon;Kim, Kyung-Hwan;Jeoung, Sun-Kyoung;Jeon, Hyoung-Jin;Joo, Sang-Il
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.206-214
    • /
    • 2007
  • The theoretical study is developed for predicting the thermal expansion changes of composites which include complex inclusion, which is used three-dimensional ellipsoid model ($a_1>a_2>a_3$), which has two aspect ratios (the primary aspect ratio, $\rho_{\alpha}=a_1/a_3$ and the secondary aspect ratio, $\rho_{\beta}=a_1/a_2$). We can predict the feature of general thermal expansion factors by theoretical approach of matrix with aligned ellipsoidal inclusion using the Eshelby's equivalent tensor. The coefficients of longitudinal linear thermal expansion ${\alpha}_{11}$ decrease to those of inclusions, ${\alpha}_f$, as both aspect ratios increase. The coefficients of transverse linear thermal expansion of composites ${\alpha}_{33}$ initially increase and show the parabolic corves with maximum values, as the concentrations of filler increase. The coefficient of thermal expansion, ${\alpha}_{22}$ in the transverse direction decreases, as $\rho_{\alpha}$ increases, however, ${\alpha}_{22}$ increases as $\rho_{\beta}$ increases. The coefficient of linear thermal expansion of composites, ${\alpha}_{33}$ in the normal direction increases, as $\rho_{\alpha}$ increases, while ${\alpha}_{33}$ decreases as $\rho_{\beta}$ increases.