Study on the Coefficient of Thermal Expansion for Composites Containing 3-Dimensional Ellipsoidal Inclusions

3차원적 타원 형태의 충전제를 함유하는 복합체의 열팽창 계수 연구

  • Lee, Kee-Yoon (Department of Polymer and Biomaterial Engineering, Chungnam National University) ;
  • Kim, Kyung-Hwan (Department of Polymer and Biomaterial Engineering, Chungnam National University) ;
  • Jeoung, Sun-Kyoung (Korea Automotive Technology Institute) ;
  • Jeon, Hyoung-Jin (NVH Korea Test & Research Team Research Engineer) ;
  • Joo, Sang-Il (Department of Polymer and Biomaterial Engineering, Chungnam National University)
  • 이기윤 (충남대학교 고분자바이오재료공학과) ;
  • 김경환 (충남대학교 고분자바이오재료공학과) ;
  • 정선경 (충남천안시 자동차부품연구소) ;
  • 전형진 (엔브이에이치코리아(주)) ;
  • 주상일 (충남대학교 고분자바이오재료공학과)
  • Published : 2007.05.31

Abstract

The theoretical study is developed for predicting the thermal expansion changes of composites which include complex inclusion, which is used three-dimensional ellipsoid model ($a_1>a_2>a_3$), which has two aspect ratios (the primary aspect ratio, $\rho_{\alpha}=a_1/a_3$ and the secondary aspect ratio, $\rho_{\beta}=a_1/a_2$). We can predict the feature of general thermal expansion factors by theoretical approach of matrix with aligned ellipsoidal inclusion using the Eshelby's equivalent tensor. The coefficients of longitudinal linear thermal expansion ${\alpha}_{11}$ decrease to those of inclusions, ${\alpha}_f$, as both aspect ratios increase. The coefficients of transverse linear thermal expansion of composites ${\alpha}_{33}$ initially increase and show the parabolic corves with maximum values, as the concentrations of filler increase. The coefficient of thermal expansion, ${\alpha}_{22}$ in the transverse direction decreases, as $\rho_{\alpha}$ increases, however, ${\alpha}_{22}$ increases as $\rho_{\beta}$ increases. The coefficient of linear thermal expansion of composites, ${\alpha}_{33}$ in the normal direction increases, as $\rho_{\alpha}$ increases, while ${\alpha}_{33}$ decreases as $\rho_{\beta}$ increases.

3차원적 타원체 형태 ($a_1>a_2>a_3$)를 사용하여, 2가지의 종횡비 (1차 종횡비 $\rho_{\alpha}$와 2차 종횡비 $\rho_{\beta}$)를 갖는 배열된 3차원 형태의 충전제를 포함하는 복합체의 열팽창 변화를 이론적으로 예측하는 모델을 연구하였다. Eshelby의 등가 텐서를 이용하여 배열된 타원형 충전제를 기지재의 이론에 의해 열팽창 계수를 예측할 수 있었다. 종단방향 열팽창 계수 ${\alpha}_{11}$는 두 가지 종횡비 모두 증가하면, 감소하여 충전제의 열팽창에 접근한다. 수직방향 열팽창 계수 ${\alpha}_{33}$는 충전제 함유량에 따라 초기에는 증가하여 최대값을 갖는 경향을 보인다. 1차 종횡비 $\rho_{\alpha}$가 증가하면, 횡단방향 열팽창 계수는 감소하나, 2차 종횡비 $\rho_{\beta}$가 증가하면, 같이 증가한다. 또한, 수직방향 열팽창 계수 ${\alpha}_{33}$$\rho_{\alpha}$가 증가하면 증가하나, $\rho_{\beta}$가 증가하면, ${\alpha}_{33}$는 반대로 감소한다.

Keywords

References

  1. K. Y. Lee, K. H. Kim, H. J. Jun, and S. I. Joo, Polymer(Korea), 31, 160 (2007)
  2. G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984)
  3. T. S. Chow, J. Polym. Sci., Polym. Phys. Ed., 16, 959 (1978)
  4. T. S. Chow, J. Polym. Sci., Polym. Phys. Ed., 16, 967 (1978)
  5. K. Y. Lee and D. R. Paul, Polymer, 46, 9064 (2005) https://doi.org/10.1016/j.polymer.2005.06.113
  6. T. Mura, Micromechanics of Defects in Solids, 2nd Ed., The Hague, Martinus Nijhoff, p.74 (1987)
  7. P. J. Yoon, T. D. Fornes, and D. R. Paul, Polymer, 43, 6727 (2002)
  8. B. Yalcin and M. Cakmak, Polymer, 45, 6623 (2004) https://doi.org/10.1016/j.polymer.2004.06.061
  9. J. D. Eshelby, Proc. Roy. Soc. London, A241, 376 (1957)
  10. T. Mori and K. Tanaka, Acta Metall., 21, 571 (1963)
  11. J. C. Halpin, AFML, TR 67-423 (1969)
  12. J. C. Halpin, Primer on Composite Msterisls Analysis, Technomic Pub. Co. Inc., Lancaster, 1992
  13. R. A. Schapery, Compos. Mater., 2, 380 (1968)
  14. T. D. Fornes and D. R. Paul, Polymer, 44, 3945 (2003) https://doi.org/10.1016/S0032-3861(03)00344-6
  15. T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003) https://doi.org/10.1016/S0032-3861(03)00471-3
  16. R. K. Shah and D. R. Paul, Polymer, 45, 2991 (2004) https://doi.org/10.1016/j.polymer.2004.02.058
  17. R. K. Shah and D. R. Paul, Polymer, 47, 4075 (2006) https://doi.org/10.1016/j.polymer.2006.02.031
  18. R. K. Shah, R. K. Krishnaswamy, S. Takahashi, and D. R. Paul, Polymer, 47, 6187(2006) https://doi.org/10.1016/j.polymer.2006.06.051
  19. D. M. Laura, H. Keskkula, J. W. Barlow, and D. R. Paul, Polymer, 44, 3347 (2003) https://doi.org/10.1016/S0032-3861(03)00221-0
  20. D. M. Laura, H. Keskkula, J. W. Barlow, and D. R. Paul, Polymer, 44, 3347 (2003) https://doi.org/10.1016/S0032-3861(03)00221-0
  21. H.-S. Lee, P. D. Fasulo, W. R. Rodgers, and D. R. Paul, Polymer, 46,11673(2005) https://doi.org/10.1016/j.polymer.2005.09.068
  22. H.-S. Lee, P. D. Fasulo, W. R. Rodgers, and D. R. Paul, Polymer, 47, 3528 (2006) https://doi.org/10.1016/j.polymer.2006.03.016
  23. R. Hill, J. Mech. Phys. Solids, 11, 357 (1963)
  24. C. L. Tucker and E. Liang, Compos. Sci. Technol. 59, 655 (1999)
  25. Y.-C. Ahn and D. R. Paul, Polymer, 47, 2830 (2006) https://doi.org/10.1016/j.polymer.2006.02.074
  26. H. A. Stretz, D. R. Paul, and P. E. Cassidy, Polymer, 46, 3818 (2005) https://doi.org/10.1016/j.polymer.2005.03.043
  27. H. A. Stretz, D. R. Paul, R. Lib, H. Keskkula, and P. E. Cassidy, Polymer, 46, 2621 (2005) https://doi.org/10.1016/j.polymer.2005.01.063
  28. R. K. Shah, D. L. Hunter, and D. R. Paul, Polymer, 46, 2646 (2005) https://doi.org/10.1016/j.polymer.2005.01.062