• Title/Summary/Keyword: error energy

Search Result 1,825, Processing Time 0.044 seconds

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

Constructed Sound Field of an Induction Motor Using Cylindrical Acoustic Holography (원통형 음향 홀로그래피를 이용하여 구성한 유도전동기의 방사 음장)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.919-929
    • /
    • 1997
  • Induction motors are used in many areas to transform electrical energy to mechanical energy. In the design of an induction motor, not only energy efficiency but also noise becomes an important factor. To effectively address the noise problem, it will be convenient if one can see where and how noise is generated and propagated. In this study sound radiation by an induction motor is visualized using cylindrical acoustic holography. To minimize the bias error by window effect Minimum Error Window(MEW) is used. Its performance is verified by numerical simulations. Based on these theoretical understanding, sound pressure measurement with an induction motor are performed. Not only sound radiation are visualized but sound pressure level and sound power level are also estimated. Results show that the main source is located at nearly bottom part of the motor and the total sound pressure level is 49dB, which satisfies the guideline value suggested by the KS C 4202.

  • PDF

A Study on the Calibration Techniques for Thermopile Pyranometer (일사계 교정기법에 관한 연구)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

Development of Safety Competences, Behavioral Indicators and Measuring Methods for Preventing Human-Error in Nuclear Power Plants: A Preliminary Study (원전 인적오류 예방을 위한 안전 역량, 행동 지표 및 측정 방법 개발: 예비 연구)

  • Moon, Kwangsu;Kim, Sa Kil;Lee, Yong-Hee;Jang, Tong Il
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • The purpose of this study was to develop safety competences, a set of behavioral indicators of each competence and measuring methods of behavioral indicators for preventing human error of nuclear power plants(NPPs). The safety competences and behavioral indicators were derived from the five steps consisted of derivation of preliminary competence items through literature review, content analysis, interview(FGI, BEI), examination of content validity and decision making of final indicators. The results showed that 13 core safety competences and 35 behavior indicators were derived finally. In addition, the methods of measuring safety competences or behavioral indicators such as Behaviorally Anchored Rating Scale (BARS), Behavior Observation Scale (BOS) were developed and suggested.

Empirical estimation of human error probabilities based on the complexity of proceduralized tasks in an analog environment

  • Park, Jinkyun;Kim, Hee Eun;Jang, Inseok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2037-2047
    • /
    • 2022
  • The contribution of degraded human performance (e.g., human errors) is significant for the safety of diverse social-technical systems. Therefore, it is crucial to understand when and why the performance of human operators could be degraded. In this study, the occurrence probability of human errors was empirically estimated based on the complexity of proceduralized tasks. To this end, Logistic regression analysis was conducted to correlate TACOM (Task Complexity) scores with human errors collected from the full-scope training simulator of nuclear power plants equipped with analog devices (analog environment). As a result, it was observed that the occurrence probability of both errors of commission and errors of omission can be soundly estimated by TACOM scores. Since the effect of diverse performance influencing factors on the occurrence probabilities of human errors could be soundly distinguished by TACOM scores, it is also expected that TACOM scores can be used as a tool to explain when and why the performance of human operators starts to be degraded.

Comparative Study on Active Yaw Control Algorithms (능동 요 제어 알고리즘의 비교 연구)

  • Choi, Hansoon;Lee, Hochul;Bang, Johyug
    • Journal of Wind Energy
    • /
    • v.10 no.3
    • /
    • pp.5-11
    • /
    • 2019
  • This paper suggests and compares two algorithms, a moving average filter method and a method developed by the National Renewable Energy Laboratory (NREL), to verify the yaw control algorithm characteristic to reduce yaw error for a wind turbine. A characteristic change for yaw movement in accordance with control parameter change that consists of each control method has been verified. Also, yaw simulations were performed using nacelle wind data measured from two areas with different turbulence intensities and the yaw movement data in each area was compared. These two algorithms and real data were compared by calculating mean absolute error (MSE) and the number of yawing (NY). As a result of the analysis, the MSE values were not significantly different between the two algorithms, but the algorithm proposed by the NREL was found to reduce yaw movement by up to 50 percent more than the moving average filter method.

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

An Experimental Evaluation on Human Error Hazards of Task using Digital Device (디지털 기기 기반 직무 수행 시 인적오류위험성에 대한 실험적 평가)

  • Oh, Yeon Ju;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The application of advanced Main Control Room(MCR) is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. The characteristics of these digital technologies and devices give many opportunities to the interface management, and can be integrated into a compact single workstation in advanced MCR so that workers can operate the plant with minimum physical burden under any operation conditions. However, these devices may introduce new types of human errors and thus a means to evaluate and prevent such errors is needed, especially those related to characteristics of digital devices. This paper reviewed the new type of human error hazards of tasks based on digital devices and surveyed researches on physiological assessment related to human error. An experiment was performed to verify human error hazards by physiological responses such as EEG which was measured to evaluate the cognitive workload of operators. And also, the performances of four tasks which are representative in human error hazard tasks based on digital devices were compared. Response time, ${\beta}$ power spectrum rate of each task by EEG, and mental workload by NASA-TLX were evaluated. In the results of the experiment, the rate of the ${\beta}$ power was increased in the task 1 and task 4 which are searching and navigating task and memory task of hierarchical information, respectively. In case of the mental workload, in most of evaluation items, task 1 and 4 were highly rated comparatively. In this paper, human error hazards might be identified by highly cognitive workload. Conclusively, it was concluded that the predictive method which is utilized in this paper and an experimental verification can be used to ensure the safety when applying the digital devices in Nuclear Power Plants (NPPs).