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a b s t r a c t

The contribution of degraded human performance (e.g., human errors) is significant for the safety of
diverse social-technical systems. Therefore, it is crucial to understand when and why the performance of
human operators could be degraded. In this study, the occurrence probability of human errors was
empirically estimated based on the complexity of proceduralized tasks. To this end, Logistic regression
analysis was conducted to correlate TACOM (Task Complexity) scores with human errors collected from
the full-scope training simulator of nuclear power plants equipped with analog devices (analog envi-
ronment). As a result, it was observed that the occurrence probability of both errors of commission and
errors of omission can be soundly estimated by TACOM scores. Since the effect of diverse performance
influencing factors on the occurrence probabilities of human errors could be soundly distinguished by
TACOM scores, it is also expected that TACOM scores can be used as a tool to explain when and why the
performance of human operators starts to be degraded.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to Baxter and Sommerville [1], the term socio-tech-
nical systems was initially suggested by Emery and Trist [2] to
indicate “systems that involve a complex interaction between
humans, machines and the environmental aspects of the work
system”. A more popular definition of socio-technical systems is
also available: “A system involving the interaction of hard systems
and human beings, in ways that either cannot be separated or are
thought to be inappropriate to separate” [3]. From these definitions,
it is strongly anticipated that the safe operation of complicated
process control systems included in diverse industrial sectors (e.g.,
chemical plants, transportation systems, maritime vessels, railway
systems, aviation systems) is largely dependent on both the reli-
ability of hardware and the reliability of human operators. Indeed,
including nuclear power plants (NPPs), this is why the degradation
of human performance (e.g., human errors) is attributable as the
root cause of significant accidents experienced in the last several
decades [4e7].

Therefore, a huge amount of effort has been spent to prevent the
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degradation of human performance, including the identification of
key factors affecting the performance of human operators (perfor-
mance influencing factors, PIFs, or performance shaping factors,
PSFs) [8]. In this regard, Park [9] summarized seven groups of PIFs
detailing those that are meaningful for understanding the variation
in the performance of human operators, which were found from
existing literature. The seven PIF groups are as follows: (1) Operator
characteristics, (2) Social aspects, (3) Task, (4) Environment, (5)
Organization, (6) System, and (7) Humanemachine interface sys-
tem (HMIS).

Each PIF group contains one or more detailed PIFs. For example,
the Environment PIF group includes detailed PIFs such as ‘temper-
ature’, ‘humidity’, ‘noise’, and ‘vibration,’, while the System PIF
group encompasses ‘rate of change of critical parameters’, ‘number
of changing variables’, and ‘highly unstable plant situation’. In
addition, in the case of the Task PIF group, there are many detailed
PIFs that can be subdivided into two sub-categories such as Task
contents and Task type/attribute.

� Task contents: (1) Procedure type, (2) Procedure availability, (3)
Amount of required information, (4) Logic structure, (5)
Decision-making criteria, (6) Clarity of instructions and
terminologies
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� Task type/attribute: (1) Type of cognitive activities (e.g., moni-
toring and detection), (2) Required level of cognition, and (3)
Dynamic/step-by-step task

Accordingly, if the effect of each detailed PIF on the performance
of human operators can be soundly correlated, it is expected that
their performance variation in a specific situation can be properly
estimated by the combination of the abovementioned seven PIF
groups. Along these lines, Park [10] proposed a measure, TACOM
(Task Complexity), that can quantify the level of task complexities
to be loaded by human operators who have to accomplish a series
of proceduralized tasks. Park [9] claimed that TACOM could be
regarded as a normative task complexity measure because it can
cover the significant PIFs belonging to the Task PIF group. If so, it is
expected that there should be a significant relation between the
performance of human operators and the associated TACOM scores.

Indeed, Podofillini et al. [11], pointed out that the likelihood of
human error observed from the full-scope training simulator of an
NPP seems to be closely related to TACOM scores. In addition, Park
[12] observed that not only the subjective workloads but also the
response times of human operators are proportional to an increase
of TACOM scores. More recently, Jang et al. [13] revealed that there
is a notable correlation between TACOM scores and the number of
human errors observed from simulated emergency situations in a
fully-digitalized main control room (MCR). Such results of previous
studies support that the TACOM measure could play a significant
role in the estimation of the occurrence probability of human
errors.

In this study, the occurrence probability of human error is
empirically investigated with respect to TACOM scores in detail. To
this end, an inventory of human error data collected from a full-
scope training simulator of a Korean domestic NPP is revisited;
the simulator is a replica of an analog MCR equipped in a West-
inghouse 3-loop pressurized water reactor plant. As a result, it was
observed that there is a statistically meaningful correlation be-
tween the occurrence probability of human errors and the associ-
ated TACOM scores. Specifically, compared to errors of omission
(EOOs), the occurrence probability of errors of commission (EOCs)
showed a clearer correlation with TACOM scores.

The rest of this paper are structured as follows. First, in Section
2, key features of the TACOM measure are introduced based on a
review of existing studies. After that, raw information of human
errors obtained from the analog MCR environment is explained in
Section 3. Then in Section 4, detailed descriptions are provided
about how to empirically estimate the occurrence probabilities of
both EOCs and EOOs by using the logistic regression technique.
Finally, in Section 5, the conclusion of this study is drawn after
discussing limitations and future work to be followed.

2. Key features of the TACOM measure

2.1. Overview of TACOM measure

As briefly explained in Section 1, it is important to manifest
when and why the performance of human operators could be
degraded. This implies that the very first phase is to understand
their performance variations with respect to the status of many PIFs
belonging to at least one of the seven groups. In this regard, it is
essential to consider the characteristics of the tasks described in
related operation procedures. This is because the operational
experience of diverse industrial sectors has emphasized that the
use of procedures is one of the strongest countermeasures against
the degradation of human performance [14e16].

Without loss of generality, the contents of a procedure such as
an emergency operating procedure (EOP) in NPPs can be
2038
subdivided into proceduralized tasks, procedural steps, and
detailed actions that instruct what should be done and how to
conduct it. Fig. 1 depicts an overall structure of a procedure with
proceduralized tasks and associated procedural steps. At a glance,
the preparation of a well-written procedure with detailed proce-
dural steps appears to be sufficient for preventing the degradation
of human performance.

Following a procedure is harder than it seems, however, because
human operators have to deal with drastically changing situations
(dynamic situations) by using a series of predefined rules (static
prescriptions) that cannot reflect the whole spectrum of such dy-
namic situations [17,18]. In other words, even though the contents
of a procedure can be regarded as a catalog of predefined rules,
performing a procedure is not the following of a simple IF-THEN-
ELSE rule but rather a kind of cognitive work composed of
diverse activities including (but not limited to) (1) monitoring
process parameters, (2) interpreting the nature of an on-going
situation, (3) planning appropriate responses to properly cope
with the situation at hand, and (4) implementing detailed actions
prescribed in a procedure. This indicates that, in order to clarify the
effect of the Task PIF group on the performance of human operators,
it is crucial to evaluate the complexity level of a proceduralized task
first. For this, the TACOMmeasure proposed in Ref. [10] can be used
to quantify the level of proceduralized tasks to which human op-
erators are exposed (Fig. 2).

In brief, the TACOM measure consists of five sub-measures that
are able to numerically evaluate the effect of significant factors
making the performance of proceduralized tasks complicated by
using the first and second order of graph entropy concepts. More
detailed information about the quantification of each sub-measure
can be found in Ref. [10].

2.2. Appropriateness of TACOM measure

As can be seen from Fig. 2, once the contents of a proceduralized
task are specified, it is necessary to conduct a task analysis to
extract key information pertaining to its complexity. The extracted
information is then used to calculate the values of five sub-
measures via relevant mathematical concepts (i.e., the first- and
second-order graph entropies). Fig. 3 schematically shows the
calculation of three sub-measures, namely SIC (step information
complexity), SLC (step logic complexity), and SSC (step size
complexity).

For example, the second-order graph entropy is applied to
obtain the SIC value that represents the complexity of a procedu-
ralized task from the perspective of ‘the amount of information to
be processed by human operators’. In contrast, the first-order graph
entropy allows us to assess the SSC value that represents the
complexity of a proceduralized task due to its predefined action
sequence to be followed by human operators. When all of the
values for the five sub-measures are specified, the TACOM score of a
proceduralized task is determined using the formula shown in the
top of Fig. 2.

Following the development of the TACOM measure, its appro-
priateness should be systematically investigated. In this regard,
from both qualitative and quantitative perspectives, it is important
to clarify at least the following two technical issues: (1) the
coverage of the TACOMmeasure in terms of the Task PIF group, and
(2) the relationship between the performance of human operators
and TACOM scores.

The first technical issue related to the coverage of the TACOM
measure can be addressed by the following two separate questions:
(1) Can the TACOM measure properly cover the detailed PIFs
included in the Task contents sub-category? and (2) Can the TACOM
measure be applied to explain the characteristics of the detailed



Fig. 1. Proceduralized tasks, procedural steps, and detailed actions; modified from [10].

Fig. 2. Overall process to calculate the TACOM score of a proceduralized task; modified from [9].
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PIFs belonging to the Task type/attribute sub-category? In order to
answer the first question, it is necessary to investigate whether or
not the TACOM measure can reflect the effects of the Task contents
PIFs in quantifying the complexity level of a proceduralized task.
Similarly, in terms of the second question, if the TACOMmeasure is
irrelevant to distinguish the characteristics of task types (e.g., step-
by-step task vs. dynamic task), it is hard to confirm its appropri-
ateness. From this concern, Park [9] claimed that the TACOM
measure is relevant because it not only contains detailed PIFs
belonging to the Task contents sub-category but also represents the
key characteristics of detailed PIFs related to the Task type/attribute
sub-category.

The second technical issue is the validity of the TACOMmeasure.
That is, if the TACOM measure has a sufficient coverage in quanti-
fying the complexity level of a proceduralized task, it is natural to
expect that TACOM scores are statistically meaningful for
2039
explaining the variability of human performance. In this regard,
many researchers have pointed out that there are meaningful re-
lationships between TACOM scores and the diverse dimensions of
human performance, such as response times, subjective workloads,
and human error rates [11,12,19e21]. A more interesting result re-
ported by Jang et al. [13] indicates that the number of human errors
observed from the full-scope training simulator of NPPs, which is a
replica of a fully digitalized MCR, exponentially goes up with an
increase in TACOM scores. If there is a notable relationship between
the number of human errors and the associated TACOM scores, it
can be confidently assumed that human error probability (HEP) can
be empirically estimated as a function of TACOM score. In order to
scrutinize this assumption, human performance data collected
from the full-scope training simulator of NPPs, which is the replica
of an analog MCR, are revisited in this study.



Fig. 3. Example of TACOM's sub-measure calculations; adopted from [11].
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3. Human error data available from an analog environment

3.1. Revisiting human performance data

One of the representative approaches to investigate the effects
of diverse PIFs on the performance of human operators is to pre-
cisely scrutinize their responses observed from an actual working
environment. Unfortunately, in the case of studying the perfor-
mance variation of human operators under incident or accident
conditions, this approach is unrealistic because we are not able to
intentionally initiate any events resulting in unwanted conse-
quences. As an alternative, human performance data observed from
simulated incident or accident conditions have been frequently
analyzed for many decades [22]. In general, a partial- or full-scope
simulator can be used for this purpose, and dedicated frameworks
to facilitate the collection of human performance data are available
now.

For instance, KAERI (Korea Atomic Energy Research Institute)
developed a framework namely HuREX (Human Reliability data
Extraction) that allows us to collect various kinds of human per-
formance data (including human errors) from the full-scope
training simulator of NPPs [23]. With this framework, KAERI
developed a large archive called the HuREX database that contains
human performance data from two kinds of full-scope training
simulators established in domestic Korean NPPs [24e26]. That is,
although most domestic Korean NPPs are controlled by analog
MCRs equipped with traditional devices (e.g., chart recorders,
alarm tiles, push buttons, and hand switches), there are several
NPPs operated by fully digitalized MCRs installed with up-to-date
devices (e.g., alarm display screens, information display screens,
and soft controls). As these two working environments are signif-
icantly different, KAERI independently gathered two sets of human
performance data. It should be noted that, in contrast to Jang et
al. [13] who compared the number of human errors observed from
the full-scope training simulator of a digitalized MCR with TACOM
scores, the present study focuses on those of an analogMCR. Table 1
summarizes the catalog of accident scenarios with the number of
simulations that were secured from the full-scope training simu-
lators of analog MCRs with the participation of human operators
2040
who are actually working as MCR operators in NPPs.
As can be seen from Table 1, human performance data were

collected from a large number of simulation records representing
diverse abnormal and accident conditions. Of them, in terms of
quantifying the complexity level of a proceduralized task as
depicted in Fig. 1, simulation records obtained from abnormal
conditions are inappropriate because human operators pick out the
most relevant abnormal operating procedure (AOP) from the cat-
alog of AOPs based on their own decision.

In other words, since there is no dedicated procedure for sup-
porting how to select a proper AOP when an abnormal condition
occurs, it is difficult for human operators to enter the AOP that fits
the abnormal condition at hand [27,28]. Indeed, the excerpt below
clearly explains this situation.

“During abnormal situations, a well-trained operator should
comprehend a malfunction in real time by analyzing alarms,
assessing values, or recognizing unusual trends of multiple in-
struments […]. In an NPP, many alarms from many different
systems often occur at the same time during an incident, making
it difficult for the operator to select a correct response effi-
ciently. Too many information imposes a heavy burden on op-
erators in a time-critical situation, and it is very difficult for
them to conduct a thorough assessment of each individual
symptom in a short period of time” [29; p. 413].

In contrast, when an accident occurs, human operators use a
specific procedure that allows them to recognize its nature based
on diverse symptoms (e.g., the status of a component and the trend
of a key process parameter) [30,31]. This implies that it is possible
to compare the complexity level of proceduralized tasks (i.e.,
TACOM scores) with the performance of human operators who are
trying to minimize the consequence of the accident by using a
procedure. Accordingly, in this study, human performance data
gathered from accident conditions (refer to the first and second row
of Table 1) were revisited to obtain the raw information of human
errors observed from simulated accident conditions.



Table 1
Inventory of simulation records collected from the full-scope training simulators of analog MCRs.

No. Simulation scenario Numbera Periodb Conditionc

1 ISLOCAd 10 Sep. 2009 to Dec. 2009 Accident
2 MSLBe followed by SGTRf 8 May 2010 to Aug. 2010
3 Slip down of control rods 14 May 2007 to Dec. 2008 Abnormal
4 Wrong operation of VCTg outlet valve 18
5 Failure of pressurizer level controller 22
6 High vibration of containment cooling fan 18
7 Failure of deaerator inlet valve 13
8 Condenser tube leak 40
9 Loss of instrumentation air 19
10 Failure of emergency seal oil pump 22
11 Loss of non-essential electric power 10
12 Malfunction of cyclone filter 8 Sep. 2011 to Nov. 2011 Abnormal
13 Decrease of deaerator water level 8
14 Loss of condenser vacuum 13

a Number of simulations.
b Collection period.
c Simulation condition.
d Interfacing system loss of coolant accident.
e Main steam line break.
f Steam generator tube rupture.
g vol control tank.
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3.2. Extracting raw information of human error

The HuREX framework defines a human error as “an action
inappropriately taken by plant personnel, or not taken when
needed, resulting in a degraded plant safety condition” [23]. From
this definition, it is evident that the HuREX framework considers
two types of human errors: EOC (an action inappropriately taken)
and EOO (an action not taken when needed). Unfortunately, the
identification of human errors is still vague unless the degraded
plant safety condition is clearly stipulated. For this reason, the
HuREX framework designates that “A human error is thus identi-
fied by the operator's responses meeting the following two criteria:
(1) the response failed to satisfy the performance requirements
stated in the procedures, and (2) the response has any of the
following three consequences: (a) inappropriate procedure/step
transition, (b) inappropriate equipment control, and (c) inappro-
priate communication to the MCR outside” [22]. On the basis of the
HuREX framework, various kinds of raw information are accumu-
lated in the HuREX database, which is helpful for understanding
when and why human errors occurred under simulated accident
conditions.

Of the available raw information in the HuREX database, in
terms of estimating an empirical human error probability as the
function of a TACOM score, it is necessary to extract at least the
following raw information: (1) types of human error (EOO or EOC),
(2) procedural steps in which human errors occurred, and (3) how
many times the corresponding procedural steps were conducted by
human operators. Once the abovementioned raw information is
obtained, the TACOM score of each procedural step in which a
human error was observed can be calculated. For example, in the
case of the procedural step exemplified in Fig.1, if a human operator
read the water level of Tank_1 as 80% when its correct value was
60%, several EOOs can be counted because the actions for coping
with the lowered water level were not properly conducted (e.g.,
Close Valve_2). Table 2 summarizes the abovementioned raw in-
formation with the associated TACOM scores identified from the
HuREX database.

As can be seen from Table 2, human errors occurred during the
performance of 19 procedural steps. In other words, most of the
procedural steps in the simulated accident conditions were suc-
cessfully conducted with no human errors. Indeed, this is a desir-
able tendency for human operators who are responsible for the
2041
operation of socio-technical systems such as NPPs. At the same
time, however, this implies that Table 2 may be insufficient for the
estimation of empirical HEPs. For this reason, a series of hypo-
thetical proceduralized tasks were introduced in this study. Fig. 4
would be helpful for explaining this idea.

As depicted in Fig. 4, let us assume that two human errors were
observed in Procedural step1 while one human error was observed
in Procedural step2. With these observations, since Proceduralized
task2 consists of both Procedural step2 and Procedural step3, it is
possible to say that one human error occurred during the perfor-
mance of Proceduralized task2. In this case, the TACOM score of
Proceduralized task2 can be quantified by the contents of both Pro-
cedural step2 and Procedural step3. Similarly, it can be said that three
human errors occurred during the performance of Hypothetical
proceduralized task1 that is composed of both Proceduralized task1
and Proceduralized task2. Therefore, if we calculate the TACOM score
of Hypothetical proceduralized task1, the amount of data included in
Table 2 can be soundly expanded.

In generating a hypothetical proceduralized task, two rules were
considered. The first one is that the procedural steps of which the
value of human error fraction given in the last column of Table 2 is
too high should be discarded from the generation of a hypothetical
proceduralized task. For example, let us recall ‘Verify the water
level of Tank_1 is less than 70%’, one of the detailed actions depicted
in Fig. 1. If a human operator wrongly reads the actual water level of
Tank_1 (e.g., 50%), all of the detailed actions that are supposed to be
conducted when its water level is less than 70% (e.g., ‘Close Valve_2’
and ‘Open Valve_3’) will be entirely omitted. In the HuREX
framework, since each omission should be counted as the total
number of EOOs pertaining to the performance of reading the
actual water level of Tank_1, there are times when the number of
total human errors approaches the number of trials (refer to the
16th, 18th, and 19th procedural steps in Table 2) or even exceeds it
(refer to the 14th, 15th, and 17th procedural steps in Table 2). In
other words, there are times when single ‘Action’ included in a
procedural step results in two or more EOOs. Accordingly, these
procedural steps were discarded from the generation of hypo-
thetical proceduralized tasks because they are able to distort the
occurrence number of human errors with respect to TACOM scores.

The second rule is that the scope of a hypothetical procedural-
ized task should be restricted to the procedural steps that are
successive. For example, it is irrelevant to define a hypothetical



Table 2
TACOM scores and human errors observed during the performance of individual procedural steps.

ID Triala Number of EOOs Number of EOCs TACOM score Human error fractionb Remark

1 17 1 2 4.084 0.18 e

2 18 3 0 3.813 0.17 e

3 18 2 0 2.904 0.11 e

4 10 1 0 3.050 0.10 e

5 9 3 0 2.806 0.33 e

6 9 3 0 2.755 0.33 e

7 9 1 1 3.424 0.22 e

8 9 2 0 3.436 0.22 e

9 9 2 2 5.151 0.44 e

10 8 1 0 2.806 0.13 e

11 8 0 1 3.832 0.13 e

12 7 0 4 3.350 0.57 e

13 6 1 0 2.896 0.17 e

14 9 3 9 3.027 1.33 Discard
15 8 10 0 4.680 1.25 Discard
16 7 0 6 2.845 0.86 Discard
17 7 18 1 3.179 2.71 Discard
18 6 5 0 5.158 0.83 Discard
19 1 0 1 3.337 1.00 Discard

a The total number of executions with respect to each procedural step.
b (Number of EOOs þ Number of EOCs)/Trial.

Fig. 4. Example of counting human errors with respect to hypothetical tasks; modified from [32].
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proceduralized task that consists of both Procedural step1 and Pro-
cedural step3. In other words, without the consideration of Proce-
dural step2, this corresponds to the null definition of a
proceduralized task that does not have an actual meaning. For
example, as shown in Fig. 4, if we assume a hypothetical task that
consists of two subtasks (i.e., ‘Proceduralized task1’ and ‘Procedu-
ralized task3’), the number of data points available will be easily
2042
increased. However, in the case of generating additional data
points, the physical meaning of a merged task should be carefully
clarified. In this light, the abovementioned example is irrelevant
because there is no rationale justifying the physical meaning of the
merged task. That is, even though we create a new task by
combining ‘Proceduralized task1’ and ‘Proceduralized task3’, it is
hard to find its physical meaning because the intention of this
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merged task would be different from the original intention sup-
ported by the three successive subtasks (‘Proceduralized task1’,
‘Proceduralized task2’, and ‘Proceduralized task3’). For this reason,
in this study, this second rule is suggested in order to emphasize
the constraint such that only successive tasks should be used for
creating new hypothetical tasks.

From the abovementioned two rules, a total of 53 hypothetical
proceduralized tasks were identified based on the combination of
procedural steps given in Table 2. Detailed information about the 53
hypothetical proceduralized tasks is summarized in the Appendix of
this paper.
Table 3
Key parameters for the Logistic regression model of EOC and EOO.

Parameter EOC EOO

Intercept �7.228 �2.359
TACOM 1.023 0.240
Degree of freedom (Total) 609 609
Degree of freedom (Residual) 608 608
Null deviance 387.7 649.8
Residual deviance 358.3 645.3
4. Estimation of empirical human error probability

As stated in Section 1, the purpose of this paper is to empirically
estimate HEPs based on TACOM scores. To this end, it is prerequisite
to corroborate the fact that there is a pertinent relationship be-
tween TACOM scores and the occurrence of human errors. For this
reason, human error fractions summarized in the Appendix are
compared with the associated TACOM scores (Fig. 5).

From Fig. 5, it is expected that the higher the TACOM score in-
creases, themorehumanoperators are apt tomake anerror including
EOO and EOC. This tendency seems to followan exponential function,
which is compatible with a result reported by Ref. [13]. This implies
that the estimation of empirical HEPswith respect toTACOMscores is
feasible, and hence the empirical HEPs of both EOCs and EOOs are
quantified using Logistic regression technique.

Similar to other regression techniques (e.g., the non-linear
regression model illustrated in Fig. 5), the primary purpose of
Fig. 5. Regression analysis between human error f
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Logistic regression is to predict the correlation between a dependent
variable and one ormore independent variables. However, one of the
unique features expected from the Logistic regression technique is
that it can be applied to the analysis of a dependent variable with
binary (dichotomous) states, such as Win/Loss, Alive/Dead, and Fail-
ure/Success (or Error/No error). In addition, since Logistic regression
technique considers the concept of Logit (the fraction of occurrence
probabilities related to binary states), it is expected that the occur-
rence probability of an EOC (and EOO) can be empirically estimated
when the TACOM score plays as the independent variable.

In this light, using R and RStudio [33,41], Logistic regression
technique is applied to analyze the correlation between human
errors (EOC and EOO) and TACOM scores summarized in the Ap-
pendix of this paper. Table 3 lists the key parameters of Logistic
regression model for both EOC and EOO, and Fig. 6 compares the
occurrence probabilities of both EOC and EOO, which are predicted
based on the parameter values of Intercept and TACOM in Table 3.

From Table 3, it seems that both Logistic regression models
requencies and the associated TACOM scores.



Fig. 6. Comparing Logistic regression lines for EOC and EOO.
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depicted in Fig. 6 are appropriate [34] because their residual de-
viances are below 666.5, which corresponds to the critical chi-
square value given the probability of 5% and 608 degree of
freedom [35]; [40]. In other words, since a high deviance value
indicates that a Logistic regression model does not fit the applied
data, it can be said that Logistic regressionmodels for both EOC and
EOO are statistically relevant for representing their occurrence
probabilities based on TACOM scores. Nevertheless, it is also true
that Logistic regression model for EOC is better than that for EOO
because the residual deviance of the former is almost half that of
the latter. Therefore, it is still prudential whether or not TACOM
scores are meaningful for explaining the change of occurrence
probabilities pertaining to EOO.

In this regard, one promising approach is to see whether or not
the residual deviance value decreases after eliminating EOOs of
which the main drivers belong to the sub-categories of Task con-
tents and Task type/attribute. That is, if an EOO occurred because of
other reasons that are not related to one of the five sub-measures
depicted in Fig. 2, it is hard to directly correlate the occurrence of
EOOs with the associated TACOM scores. Therefore, if the residual
deviance decreases when these irrelevant EOOs are removed, it is
reasonable to expect that TACOM scores can be used for estimating
the occurrence probability of EOOs. For this reason, the context
information of EOOs observed from the 13 procedural steps in
Table 2 was reviewed in detail.

As a result, two interesting contexts were identified from the
EOOs that occurred during the performance of the 5th and 6th
procedural steps shown in Table 2. The first one is the consideration
of a specific constraint given by Warning, Caution and Note state-
ments. According to U.S. Nuclear Regulatory Commission (USNRC),
they need to have dedicated features such that:

“Warnings and cautions are derived initially from technical
guidelines. They contain information used to prevent actions by
control room operators which could injure plant personnel, dam-
age equipment, or endanger public health and safety. […] They
should not contain operator actions. […] Note statements provide
operators with supplemental information concerning specific steps
or sequences of steps in the EOP. These statements should […], and
be located so as to ensure that they can easily relate the note to the
step or steps to which it applies. Because they are supplemental,
notes should not direct operators to perform actions.” [36; p. 24].
2044
In short, althoughWarning, Caution andNote statements contain
specific actions that are important for the safety of NPPs, they are
not explicitly described as a part of a procedural step. For example,
let us assume that the following Caution statement is given per-
taining to the procedural step shown in Fig. 1: “In order to provide
additional water, it is necessary to start Pump_4 if thewater level of
Tank_1 is less than 30%.” With this Caution statement, an EOO
should be marked if human operators did not start Pump_4 when
the water level of Tank_1 was 25%. Indeed, 2 out of 3 EOOs that
occurred in the 5th procedural step of Table 2 were marked due to
the omission of required actions manifested in a Caution statement.
Nevertheless, no contents of any Caution statements were consid-
ered in the quantification of TACOM scores because they are not a
part of the procedural step (i.e., do not instruct what has to be done
by human operators). This implies that, without the involvement of
Caution statements, the TACOM scores of certain proceduralized
tasks could be underestimated.

The second interesting context recognized from the EOOs
observed from the 6th procedural step of Table 2 is related to its
execution sequence. In general, it is expected that each procedural
step included in a procedure will be carried out in accordance with
a predefined execution sequence (e.g., Step 1 / Step 2 / Step 3).
However, as briefly explained in Section 2.1, it is difficult to cope
with the whole spectrum of dynamically varying situations using a
series of prescribed procedural steps. For this reason, in the case of
EOPs in NPPs, there are several procedural steps of which the
execution sequence has unique features. A non-sequential proce-
dural step is a typical one because it can be carried out at various
intervals throughout an EOP [36]. That is, human operators can
conduct a non-sequential procedural step at any time when a
trigger condition is met.

For example, if the procedural step shown in Fig. 1 corresponds
to a non-sequential procedural step, human operators should
continuously monitor the water level of Tank_1 so that they can
conduct all of the required actions belonging to it regardless of a
predefined execution sequence. This implies that human operators
are apt to omit required actions if they failed to continuously
monitor the key symptoms that are necessary to decide the satis-
faction of a trigger condition (e.g., the water level of Tank_1). Here,
it should be noted that the characteristic of a non-sequential pro-
cedural step belongs to neither Task contents nor Task type/attribute
sub-categories that are preliminarily covered by the TACOM mea-
sure. In other words, in terms of generating Logistic regression
model, it seems to be inappropriate to involve EOOs caused by the
failure of monitoring relevant symptoms. From this concern, since
all EOOs observed from the 6th procedural step of Table 2 were
caused by this type of failure, it is reasonable to compare TACOM
scores with the occurrence probability of EOOs after eliminating
those observed from the 6th procedural step.

Actually, the residual deviance of Logistic regression model that
was recalculated after eliminating the EOOs pertaining to the
abovementioned first and second context from the Appendix of this
paper is 458.48 with 495 degree of freedom. This newly calculated
value is about 30% lower than that of the original value shown in
Table 3 (i.e., 645.3). Therefore, it is anticipated that the goodness of
fit related to Logistic regression line for EOO will increase if we are
further able to pick out EOOs that were directly related to the
complexity of proceduralized tasks.

5. Discussion and conclusion

As mentioned in Section 1, the reliability of human operators is
one of the determinants to ensure the operational safety of socio-
technical systems, including NPPs. This implies that understand-
ing when and why the degradation of human performance



Fig. 7. Variation of the occurrence probability of EOC with hypothetical thresholds
based on TACOM scores.
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occurred would be the very first step to enhance the reliability of
human operators. In this study, the occurrence probability of hu-
man error was empirically investigated with respect to TACOM
scores that can represent the complexity levels of proceduralized
tasks. To this end, human errors stored in the HuREX database were
revisited, which were originally collected from the full-scope
training simulator of Korean domestic NPPs equipped with an
analogMCR. After that, Logistic regression techniquewas applied in
order to empirically estimate the occurrence probabilities of both
EOCs and EOOs with respect to TACOM scores.

As a result, it was shown that Logistic regressionmodels created
for estimating these occurrence probabilities are statistically rele-
vant. In particular, compared with EOOs, it seems that the occur-
rence probability of EOCs is more dependent on TACOM scores. One
promising assumption to explain this result is that the occurrence
of EOOs largely relies on the dynamic characteristics of an accident
condition (i.e., System PIF group) rather than the complexity of
proceduralized tasks (i.e., Task PIF group). In other words,
compared with the performance of complicated tasks, human op-
erators are apt to omit detailed actions prescribed in a procedural
step when they are faced with an accident condition during which
many kinds of critical process parameters are rapidly changing.
Indeed, this assumption is conceivable because the natures of the
accident scenarios simulated in the full-scope simulator are highly
complicated and cognitively challenging.

That is, since the simulation scenario of MSLB followed by SGTR
given in Table 1 is the combination of two representative accident
conditions, a large number of process parameters concurrently
changed with in a very short time period. In addition, due to the
rapid progression of this scenario, human operators have to
accomplish proceduralized tasks in parallel with the monitoring of
the status of key process parameters such as the pressure and
temperature of steam generators, which become the trigger con-
dition of non-sequential procedural steps. Similarly, since the
ISLOCA scenariowas initially designed to push substantial cognitive
demand on human operators [37], they have to collect a lot of
relevant symptoms in order to properly cope with the on-going
accident situation at hand. Accordingly, in terms of EOOs, human
operators may not only omit a complicated proceduralized task
when they have to conduct it but also fail to decide the necessity for
conducting a required action due to rapidly changing situations.

At the same time, if human operators have to use a procedure, it
is possible to assume that the effect of such dynamic characteristics
on the occurrence of EOCs could be smaller than that of EOOs. This
is because an EOC can occur only when human operators first
recognized that there is something to be done. If so, it is reasonable
to say that the main driver of an EOC is a misinterpretation (or
misunderstanding) of a complicated procedural step, which seems
to be directly affected by detailed PIFs belonging to both Task
contents and Task type/attribute. Unfortunately, it is not possible to
manifest the abovementioned assumption because the occurrence
probability of both EOCs and EOOs can be simultaneously affected
by the dynamic characteristics. In other words, the occurrence
probability estimated in this study (refer to Fig. 6) corresponds to
the basic HEP containing the effect of PSFs, which has to be
distinguished from the nominal HEP.

Park and Jung [38] stated that “Nominal HEP is the probability of
a given human error when the effects of performance shaping
factors (PSFs) have not been considered. In order to yield more
realistic human reliability analysis, the nominal HEPs of task ele-
ments must be modified according to the task situation” [38, p.
325]. In addition, they also specified that “In general, since indus-
trial conditions can vary in the quality levels of PSFs, a nominal HEP
must be modified if PSFs in a specific task situation are not average
conditions. Its modified form is the basic HEP, which is the
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probability of a human error on a task that is considered as an
isolated entity, unaffected by any other task” [38, p. 326]. This
implies that comparing TACOM scores (i.e., the level of a task
complexity) with the occurrence probabilities of both EOCs and
EOOs is necessary after eliminating the effect of dynamic charac-
teristics on the occurrence probabilities. For example, when human
operators are exposed to such cognitive demanding situations
generated by MSLB followed by SGTR or ISLOCA, it is natural to
anticipate that the occurrence probability of EOOs will increase due
to additional task-specific situations including (1)Warning, Caution
and Note statements, and (2) non-sequential procedural steps. This
is because the amount of cognitive resources available to human
operators is highly limited in such situations, which is crucial for
considering these constraints. In addition, it is reasonable to expect
that the occurrence probability of EOCs will go up due to a lack of
cognitive resources.

Therefore, if we are able to get the occurrence probability of
both EOCs and EOOs from a specific situation in which the effect of
such dynamic characteristics can be minimized, it is possible to
estimate the modified occurrence probabilities of both EOCs and
EOOs that seem to be closer to their nominal HEPs. Once the
modified occurrence probabilities are available, it is expected that
the correlation between the occurrence probabilities and TACOM
scores will become more evident.

One promising solution for this issue is to reanalyze human
errors observed from the full-scope training simulator of a fully-
digitalized MCR equipped with a computerized procedure system
(CPS). This is because one of the primitive CPS functions is to
support the status monitoring of non-sequential procedural steps
[39]. That is, if the CPS automatically checks the trigger condition of
non-sequential procedural steps, it is possible to observe its impact
on the occurrence of human errors (both EOCs and EOOs). If so, the
correlation between TACOM scores and the occurrence probability
of human errors would strengthen.

Once we achieve a reliable correlation between TACOM scores
and the occurrence probability of human errors, it will also be
possible to designate a certain threshold from which the perfor-
mance of human operators starts to be drastically degraded. Fig. 7 is
helpful for explaining this expectation, showing the derivative of
Logistic regression line for the EOC in Fig. 6.
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As can be seen from Fig. 7, in the case of Region A in which
TACOM scores are relatively low, the occurrence probability of an
EOC appears to slowly increase with an increase in TACOM scores.
This tendency seems to radically change, however, when the
TACOM score exceeds a specific value (Threshold1) that distin-
guishes Region A and Region B. This implies that the complexity of a
proceduralized task significantly affects the occurrence probability
of an EOC. Interestingly, this tendency quickly disappears and goes
down in Region C after the TACOM score passes another particular
value (Threshold2). Finally, in Region D, the occurrence probability
of an EOC seems to slowly decrease according to an increase in
TACOM score.

Although there are many technical issues to be resolved before
suggesting the abovementioned thresholds, it is strongly antici-
pated that the TACOM measure could play a crucial role in
accomplishing this goal. The result of this study is meaningful
because it would become the starting point of this research
direction.
ID* Trial Number of EOOs Numb

1 17 1 2
2 18 3 0
3 18 2 0
4 10 1 0
5 9 3 0
6 9 3 0
7 9 1 1
8 9 2 0
9 9 2 2
10 8 1 0
11 8 0 1
12 7 0 4
13 6 1 0
H1 12 1 2
H2 17 4 2
H3 18 5 0
H4 17 2 0
H5 10 1 0
H6 8 3 0
H7 8 2 0
H8 7 3 0
H9 7 0 1
H10 7 2 0
H11 9 2 2
H12 8 1 1
H13 7 0 4
H14 6 1 0
H15 9 0 2
H16 12 3 2
H17 16 5 2
H18 16 5 0
H19 10 1 0
H20 8 5 0
H21 6 2 0
H22 6 2 0
H23 6 0 1
H24 7 2 0
H25 5 1 0
H26 9 0 2
H27 9 3 2
H28 12 4 2
H29 17 4 2
H30 10 1 0
H31 6 5 0
H32 6 2 0
H33 7 2 1
H34 6 2 0
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Appendix. Extension of Table 2 with hypothetical
proceduralized tasks
er of EOCs TACOM score Human error fraction

4.084 0.18
3.813 0.17
2.904 0.11
3.050 0.10
2.806 0.33
2.755 0.33
3.424 0.22
3.436 0.22
5.151 0.44
2.806 0.13
3.832 0.13
3.350 0.57
2.896 0.17
4.979 0.25
4.784 0.35
4.252 0.28
3.490 0.12
3.974 0.10
4.153 0.38
4.174 0.25
3.907 0.43
4.174 0.14
4.180 0.29
5.450 0.44
4.290 0.25
4.169 0.57
4.410 0.17
5.167 0.22
5.372 0.42
4.997 0.44
4.471 0.31
4.258 0.10
4.532 0.63
4.652 0.33
4.453 0.33
4.669 0.17
4.639 0.29
5.606 0.20
5.418 0.22
5.512 0.56
5.506 0.50
5.125 0.35
4.610 0.10
4.906 0.83
4.991 0.33
4.821 0.43
4.981 0.33



(continued )

ID* Trial Number of EOOs Number of EOCs TACOM score Human error fraction

H35 9 0 2 5.724 0.22
H36 9 2 2 5.705 0.44
H37 9 3 2 5.633 0.56
H38 12 4 2 5.591 0.50
H39 10 1 2 5.375 0.30
H40 10 1 0 5.119 0.10
H41 6 4 0 5.190 0.67
H42 6 2 1 5.248 0.50
H43 5 2 0 5.126 0.40
H44 5 1 0 5.261 0.20
H45 8 0 2 5.903 0.25
H46 8 2 2 5.953 0.50
H47 9 3 2 5.806 0.56
H48 9 3 2 5.708 0.56
H49 8 1 2 5.766 0.38
H50 10 2 2 5.554 0.40
H51 6 4 1 5.390 0.83
H52 5 2 0 5.470 0.40
H53 5 3 0 5.362 0.60

*H denotes Hypothetical proceduralized task expended along with the arbitrary combination of procedural steps that successively occur in a row.
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