• Title/Summary/Keyword: error distribution

Search Result 2,036, Processing Time 0.022 seconds

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

Influence of the Statistical Distribution of Bioassay Measurement Errors on the Intake Estimation (바이오어쎄이 측정오차의 통계적 분포가 섭취량 추정판에 미치는 영향)

  • Lee, T.Y.;Kim, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10 % higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution.

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.

ERROR BOUNDS OF TRAPEZOIDAL RULE ON SUBINTERVALS USING DISTRIBUTION

  • Hong, Bum-Il;Hahm, Nahm-Woo
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.245-257
    • /
    • 2007
  • We showed in [2] that if $r\leq2$, then the average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is proportional to $h^{2r+3}$ using zero mean Gaussian distribution under the assumption that we have subintervals (for simplicity equal length) partitioning and that each subinterval has the length. In this paper, if $r\geq3$, we show that zero mean Gaussian distribution of average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by $Ch^8$.

Dual Foot-PDR System Considering Lateral Position Error Characteristics

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.

A Study on the Method to Minimize Measuring Burial Depth Error for Submarine Cable (해저케이블 매설심도 측정오차 저감 방법에 관한 연구)

  • An, Yong-Ho;Kim, Yong-Hak;Han, Jeong-Yeol;Lee, You-Jin;Han, Byoung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.329-334
    • /
    • 2012
  • The distribution submarine cables are normally used for power supply at island, which are mostly installed in the southern coast of KOREA, and partially installed in the west coast and Jeju-Island. There are two way of submarine cable burying system, buried and unburied type. Since 2003, KEPCO is entirely being constructing the distribution submarine cable by buried type. In this case, 'burial depth' is key index for evaluating the suitability of the buried situation. Therefore, the measurement accuracy of 'burial depth' is a big issue for burying system in the distribution submarine cable. This paper demonstrates the measurement error of burial depth that is affected by electrical factor such as grounding type of submarine cable in case of magnetic field detection method, and indicates the method to reduce the measurement error in buried type of distribution submarine cable system.

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

Comparative Analysis of Flood Frequncy by Moment and L-moment in Weibull-3 distribution (Weibull-3 분포모형의 모멘트법 및 L-모멘트법에 의한 홍수빈도비교분석)

  • 이순혁;맹승진;송기헌;류경식;지호근
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.331-337
    • /
    • 1998
  • This study was carried out to derive optimal design floods by Weibull-3 distribution with the annual maximum series at seven watersheds along Man, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was acknowledged by the tests of Independence, Homogeneity, detection of Outliers. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in Weibull-3 distribution were compared by the rotative mean error and relative absolute error. It has shown that design floods derived by the method of L-moments using Weibull plotting position formula in Weibull-3 distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions in view of relative mean and relative absolute error.

  • PDF

Measurement Error Model with Skewed Normal Distribution (왜도정규분포 기반의 측정오차모형)

  • Heo, Tae-Young;Choi, Jungsoon;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.953-958
    • /
    • 2013
  • This study suggests a measurement error model based on skewed normal distribution instead of normal distribution to identify slope parameter properties in a simple liner regression model. We prove that the slope parameter in a simple linear regression model is underestimated.

Penalized maximum likelihood estimation with symmetric log-concave errors and LASSO penalty

  • Seo-Young, Park;Sunyul, Kim;Byungtae, Seo
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.641-653
    • /
    • 2022
  • Penalized least squares methods are important tools to simultaneously select variables and estimate parameters in linear regression. The penalized maximum likelihood can also be used for the same purpose assuming that the error distribution falls in a certain parametric family of distributions. However, the use of a certain parametric family can suffer a misspecification problem which undermines the estimation accuracy. To give sufficient flexibility to the error distribution, we propose to use the symmetric log-concave error distribution with LASSO penalty. A feasible algorithm to estimate both nonparametric and parametric components in the proposed model is provided. Some numerical studies are also presented showing that the proposed method produces more efficient estimators than some existing methods with similar variable selection performance.