• Title/Summary/Keyword: error distribution

Search Result 2,044, Processing Time 0.036 seconds

Estimation of Chlorophyll-a Concentrations in the Nakdong River Using High-Resolution Satellite Image (고해상도 위성영상을 이용한 낙동강 유역의 클로로필-a 농도 추정)

  • Choe, Eun-Young;Lee, Jae-Woon;Lee, Jae-Kwan
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.613-623
    • /
    • 2011
  • This study assessed the feasibility to apply Two-band and Three-band reflectance models for chlorophyll-a estimation in turbid productive waters whose scale is smaller and narrower than ocean using a high spatial resolution image. Those band ratio models were successfully applied to analyzing chlorophyll-a concentrations of ocean or coastal water using Moderate Imaging Spectroradiometer(MODIS), Sea-viewing Wide Field-fo-view Sensor(SeaWiFS), Medium Resolution Imaging Spectrometer(MERIS), etc. Two-band and Three-band models based on band ratio such as Red and NIR band were generally used for the Chl-a in turbid waters. Two-band modes using Red and NIR bands of RapidEye image showed no significant results with $R^2$ 0.38. To enhance a band ratio between absorption and reflection peak, We used red-edge band(710 nm) of RapidEye image for Twoband and Three-band models. Red-RE Two-band and Red-RE-NIR Three-band reflectance model (with cubic equation) for the RapidEye image provided significance performances with $R^2$ 0.66 and 0.73, respectively. Their performance showed the 'Approximate Prediction' with RPD, 1.39 and 1.29 and RMSE, 24.8, 22.4, respectively. Another three-band model with quadratic equation showed similar performances to Red-RE two-band model. The findings in this study demonstrated that Two-band and Three-band reflectance models using a red-edge band can approximately estimate chlorophyll-a concentrations in a turbid river water using high-resolution satellite image. In the distribution map of estimated Chl-a concentrations, three-band model with cubic equation showed lower values than twoband model. In the further works, quantification and correction of spectral interferences caused by suspended sediments and colored dissolved organic matters will improve the accuracy of chlorophyll-a estimation in turbid waters.

Prediction of Heat-treatment Time of Black Pine Log Damaged by Pine Wilt Disease (소나무재선충병 피해를 받은 곰솔 원목의 열처리 소요시간 예측)

  • Han, Yeonjung;Seo, Yeon-Ok;Jung, Sung-Cheol;Eom, Chang-Deuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.370-380
    • /
    • 2016
  • The black pine logs damaged by pine wilt disease in Jeju-do were heat-treated to extend the utilization of domestic trees damaged by pine wilt disease. The heat-treatment of wood requires wood to be heated to $56^{\circ}C$ for 30 min at the core. The average moisture content and top-diameter of the black pine logs were ranged from 46% to 141% and from 180 mm to 500 mm, respectively. And the basic specific gravity and oven-dry specific gravity of the black pine logs were 0.47 and 0.52, respectively. The time required for heat-treatment at $105^{\circ}C$ temperature was ranged from 7.7 h to 44.2 h, depending on moisture content and top-diameter. The temperature distribution was used to predict the time required for heat-treatment of black pine log with various moisture contents and top-diameters using finite difference method. The thermal properties of wood including the thermal conductivity and specific heat in accordance with moisture content were calculated. Heat transfer coefficient for mixed convection in form of adding natural convection and forced convection was used for heat transfer analysis. The error between the measured and predicted values ranged from 3% to 45%. The predicted times required for heat-treatment of black pine log with 50% moisture content and 200 mm, 300 mm, and 400 mm top-diameter were 10.9 h, 18.3 h, and 27.0 h, respectively. If the initial moisture content of black pine log is 75%, heat treatment times of 13.6 h, 22.5 h, and 32.8 h were predicted in accordance with top-diameter. And if the initial moisture content of black pine log is 100%, heat treatment times of 16.2 h, 26.5 h, and 38.2 h were predicted in accordance with top-diameter. When the physical properties of logs damaged by pine wilt disease are presented, these results can be applicable to the heat-treatment of red pine and Korean pine logs as well.

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

Improvement of the Dose Calculation Accuracy Using MVCBCT Image Processing (Megavoltage Cone-Beam CT 영상의 변환을 이용한 선량 계산의 정확성 향상)

  • Kim, Min-Joo;Cho, Woong;Kang, Young-Nam;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • The dose re-calculation process using Megavoltage cone-beam CT images is inevitable process to perform the Adaptive Radiation Therapy (ART). The purpose of this study is to improve dose re-calculation accuracy using MVCBCT images by applying intensity calibration method and three dimensional rigid body transform and filtering process. The three dimensional rigid body transform and Gaussian smoothing filtering process to MVCBCT Rando phantom images was applied to reduce image orientation error and the noise of the MVCBCT images. Then, to obtain the predefined modification level for intensity calibration, the cheese phantom images from kilo-voltage CT (kV CT), MVCBCT was acquired. From these cheese phantom images, the calibration table for MVCBCT images was defined from the relationship between Hounsfield Units (HUs) of kV CT and MVCBCT images at the same electron density plugs. The intensity of MVCBCT images from Rando phantom was calibrated using the predefined modification level as discussed above to have the intensity of the kV CT images to make the two images have the same intensity range as if they were obtained from the same modality. Finally, the dose calculation using kV CT, MVCBCT with/without intensity calibration was applied using radiation treatment planning system. As a result, the percentage difference of dose distributions between dose calculation based on kVCT and MVCBCT with intensity calibration was reduced comparing to the percentage difference of dose distribution between dose calculation based on kVCT and MVCBCT without intensity calibration. For head and neck, lung images, the percentage difference between kV CT and non-calibrated MVCBCT images was 1.08%, 2.44%, respectively. In summary, our method has quantitatively improved the accuracy of dose calculation and could be a useful solution to enhance the dose calculation accuracy using MVCBCT images.

Intensity Modulated Radiation Therapy Commissioning and Quality Assurance: Implementation of AAPM TG119 (세기조절방사선치료(IMRT)의 Commissioning 및 정도관리: AAPM TG119 적용)

  • Ahn, Woo-Sang;Cho, Byung-Chul
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The purpose of this study is to evaluate the accuracy of IMRT in our clinic from based on TG119 procedure and establish action level. Five IMRT test cases were described in TG119: multi-target, head&neck, prostate, and two C-shapes (easy&hard). There were used and delivered to water-equivalent solid phantom for IMRT. Absolute dose for points in target and OAR was measured by using an ion chamber (CC13, IBA). EBT2 film was utilized to compare the measured two-dimensional dose distribution with the calculated one by treatment planning system. All collected data were analyzed using the TG119 specifications to determine the confidence limit. The mean of relative error (%) between measured and calculated value was $1.2{\pm}1.1%$ and $1.2{\pm}0.7%$ for target and OAR, respectively. The resulting confidence limits were 3.4% and 2.6%. In EBT2 film dosimetry, the average percentage of points passing the gamma criteria (3%/3 mm) was $97.7{\pm}0.8%$. Confidence limit values determined by EBT2 film analysis was 3.9%. This study has focused on IMRT commissioning and quality assurance based on TG119 guideline. It is concluded that action level were ${\pm}4%$ and ${\pm}3%$ for target and OAR and 97% for film measurement, respectively. It is expected that TG119-based procedure can be used as reference to evaluate the accuracy of IMRT for each institution.

Measurement of Radiation Using Tissue Equivalent Phantom in ICR Treatment (자궁강내 근접방사선조사시 인체조직등가 팬톰을 이용한 방사선량 측정)

  • Jang, Hong-Seok;Suh, Tae-Suk;Yoon, Sei-Chul;Ryu, Mi-Ryeong;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • This study is to compare A point doses in human pelvic phantom by film dosimetry, computer planning and manual calculation by using of along-away table. We developed tissue equivalent human pelvic phantom composed of four pieces of cylindrical acryl tubes with water, to simulate intracavitary radiation (ICR) in patients with cervix cancer. When the phantom assembled from 4 pieces, it has a small space for inserting Fletcher-Suit-Delclos applicator like a human vagina. Fletcher-Suit-Delclos applicator inserted into the space was packed tightly with furacin gauzes, and three $^{137}Cs$ sources with radioactivity of $15.7mg\;Ra-eq$ were inserted into the tandem. For the film dosimetry, two pieces of X-OMAT V film (Kodak Co.) of which planes include point A, were arranged orthogonally in the slits between phantoms. A point dose and iso-dose curves were measured by means of optical densitometer. A point doses by film dosimetry, RTP system and manual calculation by using of along-away table were compared, and iso-dose curves by film dosimetry and computer planning were also compared. The dose of A point was 51.2cGy/hr by film dosimetry, 46.7cGy/hr by RTP system and 47.9 cGy/hr by along-away table. A point dose by computer planning was similar to the dose by calculation using of along-away table with acceptable accuracy $({\pm}3%)$, however, the dose by film dosimetry was different from two others with about 10% error. Since most clinical beams contains a scatter component of low energy photons, the correlation between optical density and dose becomes tenuous. In addition, film suffers from several potential errors such as changes in processing conditions, interfilm emulsion differences, and artifacts caused by air pockets adjacent to the film. For these reasons, absolute dosimetry with film is impractical, however, it is very useful for checking qualitative patterns of a radiation distribution. In future, solid state dosimeter such as TLD must be used for the dosimetry of ionizing radiation. When considerable care is used, precision of approximately 3% may be obtained using TLD.

  • PDF

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Analysis of Misconception on the North Korea Cold Current in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 북한한류 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Lee, Eun-Young;Kim, Young Ho;Byun, Do-Seong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.490-503
    • /
    • 2020
  • Oceanic current and circulation have played an important role as regulators of the earth's energy distribution. The science and earth science textbooks for secondary schools based on the 2015 revised curriculum included a misconception of the seasonal variation of the North Korea Cold Current (NKCC) among the currents around the Korean Peninsula. To analyze this, the contents related to the NKCC were collected in the textbooks of five middle and six high schools, and a questionnaire survey was conducted on 30 middle school science teachers. The survey consisted of questions about whether the textbook mentions the NKCC and whether there is an error in the concept of the temporal variation of the NKCC, and the teachers' free opinions related to the NKCC were collected. The textbooks suggest that the NKCC is strongest in winter, which is not consistent with scientific findings so far. In fact, there is scientific evidence that the NKCC is the strongest in the summer. In this study, the causes and processes of misconceptions were investigated. According to an analysis of the survey, most teachers had an knowledge that the NKCC is stronger in winter. These errors began with a misconception of the terms, which teachers had imprinted on their memory as firm knowledge. These misconceptions originated from the knowledge that teachers themselves acquired from their secondary school years and have long been transferred back to teachers and students without revising the misconceptions of textbooks. This situation is expected to have a seriously recurrent structure that produces students' serious misconceptions in the future. Therefore, this study summarizes existing results on the seasonal variability of the NKCC and suggests the necessity for re-education to improve teachers' professionalism and to eliminate the misconceptions of teachers and students.

A Study on the Governance of U.S. Global Positioning System (미국 글로벌위성항법시스템(GPS)의 거버넌스에 관한 연구 - 한국형위성항법시스템 거버넌스를 위한 제언 -)

  • Jung, Yung-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.127-150
    • /
    • 2020
  • A Basic Plan for the Promotion of Space Development (hereinafter referred to as "basic plan"), which prescribes mid- and long-term policy objectives and basic direction-setting on space development every five years, is one of the matters to be deliberated by the National Space Committee. Confirmed February 2018 by the Committee, the 3rd Basic Plan has a unique matter, compared to the 2nd Basic Plan. It is to construct "Korean Positioning System(KPS)". Almost every country in the world including Korea has been relying on GPS. On the occasion of the shooting down of a Korean Air flight 007 by Soviet Russia, GPS Standard Positioning Service has been open to the world. Due to technical errors of GPS or conflict of interests between countries in international relations, however, the above Service can be interrupted at any time. Such cessation might bring extensive damage to the social, economic and security domains of every country. This is why some countries has been constructing an independent global or regional satellite navigation system: EU(Galileo), Russia(Glonass), India(NaVic), Japan(QZSS), and China(Beidou). So does South Korea. Once KPS is built, it is expected to make use of the system in various areas such as transportation, aviation, disaster, construction, defense, ocean, distribution, telecommunication, etc. For this, a pan-governmental governance is needed to be established. And this governance must be based on the law. Korea is richly experienced in developing and operating individually satellite itself, but it has little experience in the simultaneous development and operation of the satellites, ground, and users systems, such as KPS. Therefore we need to review overseas cases, in order to minimize trial and error. U.S. GPS is a classic example.

Development of a Small Animal Positron Emission Tomography Using Dual-layer Phoswich Detector and Position Sensitive Photomultiplier Tube: Preliminary Results (두층 섬광결정과 위치민감형광전자증배관을 이용한 소동물 양전자방출단층촬영기 개발: 기초실험 결과)

  • Jeong, Myung-Hwan;Choi, Yong;Chung, Yong-Hyun;Song, Tae-Yong;Jung, Jin-Ho;Hong, Key-Jo;Min, Byung-Jun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • Purpose: The purpose of this study was to develop a small animal PET using dual layer phoswich detector to minimize parallax error that degrades spatial resolution at the outer part of field-of-view (FOV). Materials and Methods: A simulation tool GATE (Geant4 Application for Tomographic Emission) was used to derive optimal parameters of small PET, and PET was developed employing the parameters. Lutetium Oxyorthosilicate (LSO) and Lutetium-Yttrium Aluminate-Perovskite(LuYAP) was used to construct dual layer phoswitch crystal. $8{\times}8$ arrays of LSO and LuYAP pixels, $2mm{\times}2mm{\times}8mm$ in size, were coupled to a 64-channel position sensitive photomultiplier tube. The system consisted of 16 detector modules arranged to one ring configuration (ring inner diameter 10 cm, FOV of 8 cm). The data from phoswich detector modules were fed into an ADC board in the data acquisition and preprocessing PC via sockets, decoder block, FPGA board, and bus board. These were linked to the master PC that stored the events data on hard disk. Results: In a preliminary test of the system, reconstructed images were obtained by using a pair of detectors and sensitivity and spatial resolution were measured. Spatial resolution was 2.3 mm FWHM and sensitivity was 10.9 $cps/{\mu}Ci$ at the center of FOV. Conclusion: The radioactivity distribution patterns were accurately represented in sinograms and images obtained by PET with a pair of detectors. These preliminary results indicate that it is promising to develop a high performance small animal PET.