• 제목/요약/키워드: equivalent static loads

검색결과 123건 처리시간 0.029초

강합성 중공 기둥의 내진 성능 (Seismic Performance of a Hollow Composite Column)

  • 한택희;김정훈;임남형;강영종
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.215-226
    • /
    • 2008
  • 강관이 삽입된 강합성 중공 기둥의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 강합성 중공 기둥과 일반 중실 RC기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 최대 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 강합성 중공 기둥은 중실 RC 기둥에 비해 약 2배의 모멘트에 저항을 하였으며, 에너지의 흡수와 소산에서도 2배 정도의 성능을 보여주어, 강합성 중공 기둥의 우수한 성능을 확인하였다.

내부 구속 중공 CFT 기둥의 내진 성능 평가 (Evaluation of Seismic Performance for an Internally Confined Hollow CFT Column)

  • 한택희;김성남;강영종
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.53-65
    • /
    • 2007
  • 새로운 형식의 기둥인 내부 구속 중공 콘크리트 충전 튜브 기둥(내부 구속 중공 CFT 기둥, ICH CFT column ; Internally Confined Hollow CFT Column)의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 2가지 종류의 ICH CFT 기둥과 일반 중실 RC 기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 최대 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 ICH CFT 기둥은 중실 RC 기둥에 비해 약 2배의 모멘트에 저항을 하였으며, 에너지의 흡수와 소산에서도 1.5배 정도의 성능을 보여주어, ICH CFT 기둥이 일반 중실 RC 기둥보다 더 뛰어난 성능을 가짐을 보여주었다.

파형강관 내부 구속 중공 철근 콘크리트 기둥의 내진 성능 (Seismic Performance of Internally Confined Hollow RC Column with Corrugated Steel Tube)

  • 한택희;김종민;강준석;강영종
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.31-38
    • /
    • 2008
  • 파형강관으로 내부 구속된 중공 철근콘크리트 기둥(파형강관 내부 구속 중공 RC 기둥, ICH RC-CT column ; Internally Confined Hollow RC column with a Corrugated Steel Tube)의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 ICH RC-CT 기둥과 일반 중실 RC 기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 ICH RC-CT 기둥은 중실 RC 기둥에 비해 작은 에너지 소산능력을 보여주었으나, 에너지 연성도와 등가 점성 감쇠비 측면에서는 거의 대등한 성능을 보여주었다.

건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰 (Investigation on Seismic Design Component and Load for Nonstructural Element)

  • 최인섭;이주희;손정훈;김준희
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

Static analysis of cutout microstructures incorporating the microstructure and surface effects

  • Alazwari, Mashhour A.;Abdelrahman, Alaa A.;Wagih, Ahmed;Eltaher, Mohamed A.;Abd-El-Mottaleb, Hanaa E.
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.583-597
    • /
    • 2021
  • This article develops a nonclassical model to analyze bending response of squared perforated microbeams considering the coupled effect of microstructure and surface stress under different loading and boundary conditions, those are not be studied before. The corresponding material and geometrical characteristics of regularly squared perforated beams relative to fully filled beam are obtained analytically. The modified couple stress and the modified Gurtin-Murdoch surface elasticity models are adopted to incorporate the microstructure as well as the surface energy effects. The differential equations of equilibrium including the Poisson's effect are derived based on minimum potential energy. Exact closed form solution is obtained for bending behavior of the proposed model considering the classical and nonclassical boundary conditions for both uniformly distributed and concentrated loads. The proposed model is verified with results available in the literature. Influences of the microstructure length scale parameter, surface energy, beam thickness, boundary and loading conditions on the bending behavior of perforated microbeams are investigated. It is observed that microstructure and surface parameters are vital in investigation of the bending behavior of perforated microbeams. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams that commonly used in nanoactuators, nanoswitches, MEMS and NEMS systems.

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation

  • Mohammed, Chatbi;Baghdad, Krour;Mohamed A., Benatta;Zouaoui R., Harrat;Sofiane, Amziane;Mohamed Bachir, Bouiadjra
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.685-697
    • /
    • 2022
  • Nanotechnology has become one of the interesting technique used in material science and engineering. However, it is low used in civil engineering structures. The purpose of the present study is to investigate the static behavior of concrete plates reinforced with silica-nanoparticles. Due to agglomeration effect of silica-nanoparticles in concrete, Voigt's model is used for obtaining the equivalent nano-composite properties. Furthermore, the plate is simulated mathematically with higher order shear deformation theory. For a large use of this study, the concrete plate is assumed resting on a Pasternak elastic foundation, including a shear layer, and Winkler spring interconnected with a Kerr foundation. Using the principle of virtual work, the equilibrium equations are derived and by the mean of Hamilton's principle the energy equations are obtained. Finally, based on Navier's technique, closed-form solutions of simply supported plates have been obtained. Numerical results are presented considering the effect of different parameters such as volume percent of SiO2 nanoparticles, mechanical loads, geometrical parameters, soil medium, on the static behavior of the plate. The most findings of this work indicate that the use of an optimum amount of SiO2 nanoparticles on concretes increases better mechanical behavior. In addition, the elastic foundation has a significant impact on the bending of concrete slabs.

Static bending response of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Amine Daikh;Ahmed Drai;Mohamed Ouejdi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.289-301
    • /
    • 2024
  • In this work, an analytical model employing a new higher-order shear deformation beam theory is utilized to investigate the bending behavior of axially randomly oriented functionally graded carbon nanotubes reinforced composite nanobeams. A modified continuum nonlocal strain gradient theory is employed to incorporate both microstructural effects and geometric nano-scale length scales. The extended rule of mixture, along with molecular dynamics simulations, is used to assess the equivalent mechanical properties of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beams. Carbon nanotube reinforcements are randomly distributed axially along the length of the beam. The equilibrium equations, accompanied by nonclassical boundary conditions, are formulated, and Navier's procedure is used to solve the resulting differential equation, yielding the response of the nanobeam under various mechanical loadings, including uniform, linear, and sinusoidal loads. Numerical analysis is conducted to examine the influence of inhomogeneity parameters, geometric parameters, types of loading, as well as nonlocal and length scale parameters on the deflections and stresses of axially functionally graded carbon nanotubes reinforced composite (AFG CNTRC) nanobeams. The results indicate that, in contrast to the nonlocal parameter, the beam stiffness is increased by both the CNTs volume fraction and the length-scale parameter. The presented model is applicable for designing and analyzing microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) constructed from carbon nanotubes reinforced composite nanobeams.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Continuous force excited bridge dynamic test and structural flexibility identification theory

  • Zhou, Liming;Zhang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.391-405
    • /
    • 2019
  • Compared to the ambient vibration test mainly identifying the structural modal parameters, such as frequency, damping and mode shapes, the impact testing, which benefits from measuring both impacting forces and structural responses, has the merit to identify not only the structural modal parameters but also more detailed structural parameters, in particular flexibility. However, in traditional impact tests, an impacting hammer or artificial excitation device is employed, which restricts the efficiency of tests on various bridge structures. To resolve this problem, we propose a new method whereby a moving vehicle is taken as a continuous exciter and develop a corresponding flexibility identification theory, in which the continuous wheel forces induced by the moving vehicle is considered as structural input and the acceleration response of the bridge as the output, thus a structural flexibility matrix can be identified and then structural deflections of the bridge under arbitrary static loads can be predicted. The proposed method is more convenient, time-saving and cost-effective compared with traditional impact tests. However, because the proposed test produces a spatially continuous force while classical impact forces are spatially discrete, a new flexibility identification theory is required, and a novel structural identification method involving with equivalent load distribution, the enhanced Frequency Response Function (eFRFs) construction and modal scaling factor identification is proposed to make use of the continuous excitation force to identify the basic modal parameters as well as the structural flexibility. Laboratory and numerical examples are given, which validate the effectiveness of the proposed method. Furthermore, parametric analysis including road roughness, vehicle speed, vehicle weight, vehicle's stiffness and damping are conducted and the results obtained demonstrate that the developed method has strong robustness except that the relative error increases with the increase of measurement noise.