Seismic Performance of a Hollow Composite Column

강합성 중공 기둥의 내진 성능

  • 한택희 (Auburn대학교 토목공학과) ;
  • 김정훈 (고려대학교 건축사회환경공학과) ;
  • 임남형 (충남대학교 토목공학과) ;
  • 강영종 (고려대학교 건축사회환경공학과)
  • Received : 2008.01.09
  • Accepted : 2008.03.25
  • Published : 2008.04.10

Abstract

A column test was performed for a hollow composite column to evaluate its seismic performance. The seismic performances of a hollow composite column and a reinforced concrete (RC) column were evaluated and compared by quasi-static tests. Lateral displacements and lateral loads of the column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, and damage indices were calculated from the recorded data. From the test results, the hollow composite column showed a seismic performance superior to the column in terms of double moment capacity, ultimate energy, and energy absorption.

강관이 삽입된 강합성 중공 기둥의 내진 성능 평가 실험을 수행하였다. 준정적 실험을 통하여 강합성 중공 기둥과 일반 중실 RC기둥의 내진 성능을 비교 평가 하였다. 각각의 기둥 시험체에 대해 최대 하중과 변위의 관계를 측정하였으며, 이를 바탕으로 연성도, 소산에너지, 등가 감쇠비, 손상 지수가 계산되었다. 실험 결과 강합성 중공 기둥은 중실 RC 기둥에 비해 약 2배의 모멘트에 저항을 하였으며, 에너지의 흡수와 소산에서도 2배 정도의 성능을 보여주어, 강합성 중공 기둥의 우수한 성능을 확인하였다.

Keywords

References

  1. 한국콘크리트학회(2004) 콘크리트구조설계기준 해설
  2. Argyris, J.H., Symeonidis, Sp. (1981) Nonlinear finite element analysis of elastic systems under nonconservative loading - natural formulation, Part I: quasistatic problems, Comput. Meth. Appl. Mech. Engng., Vol. 26, pp.75-123. https://doi.org/10.1016/0045-7825(81)90131-6
  3. Carnoy, E. (1980) Postbuckling analysis of elastic structures by the finite element method, Comput. Meth. Appl. Mech. Engng., Vol. 23, pp.143-174. https://doi.org/10.1016/0045-7825(80)90091-2
  4. Fardis, M.N. (1995) Damage measures and failure criteria for reinforced concrete members, 10th ECEE, Rotterdam, Vol. 2, pp.1377-1382.
  5. Haftka, R.T., Mallet, R.H., Nachbar, W. (1971) Adaptation of Koiter's method to finite element analysis of snap-through buckling behavior, International Journal of Solid Structures, Vol. 7, pp.1427-1445. https://doi.org/10.1016/0020-7683(71)90055-2
  6. Kerr, A.D., Soifer, M.T. (1969) The Linearization of the Prebuckling State and Its Effects on the Determined Instability Load, Journal of Applied Mechanics, Vol. 36, pp.775-785. https://doi.org/10.1115/1.3564770
  7. Loh, C.H., Jean, W.Y., Penzien, J. (1994) Uniformhazard response spectra-an alternative approach, Earthquake Engineering & Structural Dynamics, Vol. 23, No. 4, pp.433 https://doi.org/10.1002/eqe.4290230406
  8. Mander, J.B., Priestly, M.J.N., Park, R. (1984) Seismic design of bridge piers, Research Report No. 84-2, Univ. of Canterbury, New Zealand
  9. Park, R. (1988) Ductility evaluation from laboratory and analytical testing, Proceeding of Ninth World Conference on Earthquake Engineering., Tokyo, Japan. Vol.8
  10. Popovics, S., (1973) A Numerical Approach to the Complete stress-strain curves of concrete, Cement and Concrete Research, Vol. 3, No. 5, pp.583-599. https://doi.org/10.1016/0008-8846(73)90096-3
  11. Sun, S.M., Natori, M.C. (1996) Numerical solution of large deformation problems involving stability and unilateral constraints, Computers and Structures, Vol. 58, No. 6, pp.1245-1260 https://doi.org/10.1016/0045-7949(95)00081-X