• Title/Summary/Keyword: equilibrium test

Search Result 557, Processing Time 0.026 seconds

A Dynamic Study on Housing and Stock Market in Europe : Focused on Greece

  • JEONG, Dong-Bin
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.8 no.1
    • /
    • pp.57-69
    • /
    • 2020
  • Purpose - This study examines what are the asset market fluctuations in Europe and how each economic variable affects major variables, and explore the dynamics of housing and stock market through Greece. The variables under consideration are balance on current account (BCA), index of stock (STOCK), gross domestic product (GDP), housing price indices (HOUSING), M3, real rate of interest (IR_REAL) and household credits (LOAN). We investigate the functional and causal relationships between housing and stock market. Research design, data, and methodology - Vector error correction model (VECM) is used to figure out the dynamic relationships among variables. This study also contains the augmented Dickey-Fuller unit root, cointegration, Granger causality test, and impulse response function and variance decomposition analysis by EViews 11.0. Results - The statistical tests show that all variables under consideration have one unit root and there is a longterm equilibrium relationship among variables for Greece. GDP, IR_REAL, M3, STOCK and LOAN can be considered as causal factors to affect real estate market, while GDP, LOAN, M3, BCA and HOUSING can bring direct effects to stock market in Greece. Conclusions - It can be judged that the policy that affects the lending policy of financial institutions may be more effective than the indirect variable such as monetary interest rate.

A load-bearing structural element with energy dissipation capability under harmonic excitation

  • Pontecorvo, Michael E.;Barbarino, Silvestro;Gandhi, Farhan S.;Bland, Scott;Snyder, Robert;Kudva, Jay;White, Edward V.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.345-365
    • /
    • 2015
  • This paper focuses on the design, fabrication, testing and analysis of a novel load-bearing element with energy dissipation capability. A single element comprises two von-Mises trusses (VMTs), which are sandwiched between two plates and connected to dashpots that stroke as the VMTs cycle between stable equilibrium states. The elements can be assembled in-plane to form a large plate-like structure or stacked with different properties in each layer for improved load-adaptability. Also introduced in the elements are pre-loaded springs (PLSs) that provide high initial stiffness and allow the element to carry a static load even when the VMTs cannot under harmonic disturbance input. Simulations of the system behavior using the Simscape environment show good overall correlation with test data. Good energy dissipation capability is observed over a frequency range from 0.1 Hz to 2 Hz. The test and simulation results show that a two layer prototype, having one soft VMT layer and one stiff VMT layer, can provide good energy dissipation over a decade of variation in harmonic load amplitude, while retaining the ability to carry static load due to the PLSs. The paper discusses how system design parameter changes affect the static load capability and the hysteresis behavior.

Generalized Solution Procedure for Slope Stability Analysis Using Genetic Algorithm (유전자 알고리즘을 이용한 사면안정해석의 일반화 해법)

  • Shin, Eun-Chul;Patra, Chittaranjan R.;Pradhan, R.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.5-11
    • /
    • 2008
  • This paper pertains to the incorporation of a genetic algorithm methodology for determining the critical slip surface and the corresponding factor of safety of soil slopes using inclined slice method. The analysis is formulated as a constrained optimization problem to solve the nonlinear equilibrium equations and finding the factor of safety and the critical slip surface. The sensitivity of GA optimization method is presented in terms of development of failure surface. Example problem is presented to demonstrate the efficiencies of the genetic algorithm approach. The results obtained by this method are compared with other traditional optimization technique.

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

Mechanisms on Struvite Production for Nitrogen and Phosphorus Recovery (질소/인 회수를 위한 Struvite 생성 메커니즘)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • The recovery of struvite using nitrogen and phosphorus in wastewaters is useful for prevention of eutrophication and use as fertilizer, but there are theoretical and technical issues to be resolved. Through the detailed literature review, this study discusses the possible reasonable prediction of struvite formation reaction by setting a feasible reaction equation with some theoretical considerations. In a technical aspect, the purity of struvite in solid precipitates can be promoted by excluding Ca in an effective way. As for the struvite reaction prediction issue, selection of proper equilibrium reaction as well as its reaction equilibrium coefficient is significant in the neutral and basic pH regions. The equilibrium reaction agrees well with the experimental batch test results. Considering the charge balance of the ions, the pH drop along struvite formation in a diluted solution can be predicted. Also, improvement of struvite purity through elimination of Ca can be expected by providing a highly concentrated ${NH_4}^+-N$ relative to ${HPO_4}^{2-}-P$ because ${NH_4}^+$ can enhance the thermodynamic driving force toward favorable struvite formation. Even though the phosphate reacts rapidly with Ca to form a solid precipitate, the thermodynamic driving force due to the high ${NH_4}^+$ activity can dissociate the phosphate-calcium precipitates and produce struvite.

Operating Characteristics of Counterrotating Floating Ring Journal Bearings

  • Cheong, Yeon-Min;Kim, Kyung-Woong
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • The steady state performance of the counterrotating floating ring journal bearings is analyzed with isothermal finite bearing theory. The effect of counterrotating speed of the sleeve on the performance of the bearing is investigated. It is shown that counterrotating floating ring journal bearings can have considerable load capacity at the same counterrotating speeds, while conventional circular journal bearings with one fluid film cannot. Investigating the relationship between the frictional torques exerted on the ring due to the inner and outer films and the rotational speed of the ring, the stability of the equilibrium state is identified and the operating characteristics of the counterrotating floating ring journal bearing according to the method of acceleration or deceleration of the rotational speeds of the journal and sleeve are clarified. It is theoretically confirmed that floating ring journal bearings can be used in counterrotating journal-bearing system and become good substitutes for rolling bearings in counterrotating systems.

  • PDF

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

A Perching Mechanism of a Quadrotor for Energy Harvesting (에너지 하베스팅을 위한 쿼드로터의 퍼칭 메커니즘 연구)

  • Choi, Hong-Cheol;Shin, Nae-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.198-204
    • /
    • 2018
  • Quadrotor with limited flight time due to battery level can have the extended mission life by applying energy harvesting technology. Bio-inspiration from the birds' locomotion of flight and perch-and-stare can make energy consumption efficient, and energy harvesting technology can generate energy. In order to charge the battery with solar power, the drones are required to be in a position without shade. In the mountainous terrain, a novel mechanism is required in order to be located stably at the top of the tree or the inclined rock. In this study, we propose an analysis of the origami structure and the concept design of the perching mechanism with two stable equilibrium states. The origami structure composed of compliant material can be applied to the perching mechanism that can be locked passively. Moreover, the experimental results of the trajectory and perching test are discussed.

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

THE SMOOTHED PARTICLE HYDRODYNAMICS AND THE BINARY TREE COMBINED INTO BTSPH: PERFORMANCE TESTS

  • KIM W. -T.;HONG S. S.;YUN H. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.13-29
    • /
    • 1994
  • We have constructed a 3-dim hydrodynamics code called BTSPH. The fluid dynamics part of the code is based on the smoothed particle hydrodynamics (SPH), and for its Poisson solver the binary tree (BT) scheme is employed. We let the smoothing length in the SPH algorithm vary with space and time, so that resolution of the calculation is considerably enhanced over the version of SPH with fixed smoothing length. The binary tree scheme calculates the gravitational force at a point by collecting the monopole forces from neighboring particles and the multipole forces from aggregates of distant particles. The BTSPH is free from geometric constraints, does not rely on grids, and needs arrays of moderate size. With the code we have run the following set of test calculations: one-dim shock tube, adiabatic collapse of an isothermal cloud, small oscillation of an equilibrium polytrope of index 3/2, and tidal encounter of the polytrope and a point mass perturber. Results of the tests confirmed the code performance.

  • PDF