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Generalized Solution Procedure for Slope Stability Analysis
Using Genetic Algorithm
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Abstract

This paper pertains to the incorporation of a genetic algorithm methodology for determining the critical slip surface
and the corresponding factor of safety of soil slopes using inclined slice method. The analysis 1s formulated as
a constrained optimization problem to solve the nonlinear equilibrium equations and finding the factor of safety
and the critical slip surface. The sensitivity of GA optimization method is presented in terms of development of
failure surface. Example problem is presented to demonstrate the efficiencies of the genetic algorithm approach.

The results obtained by this method are compared with other traditional optimization technique.

Keywords : Consolidation, CRS test, Strain rate, Incremental loading test, Preconsolidation pressure

1. Introduction with. Most of these analytical approaches use either the
vertical method of slices or the multiple-wedge methods.

The stability of slopes has received wide attention due It has been recognized quite early that slope stability
to its practical importance in the design of excavations, analysis is essentially a problem of optimization (Basudhar,
embankments, earth dams, and rock fill dams etc. Generally, 1976; Baker and Garber, 1977) namely the determination
limit equilibrium techniques are commonly used to assess of the slip surface that yields the minimum factor of
the stability of slopes, as complex geological sub-soil safety. Many methods of factor of safety computations
profiles, seepage, and external loads can be easily dealt for slopes using circular and noncircular slip surfaces
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have been developed over the years. Many slope stability
softwares using the limit equilibrium analysis have been
described in literature (Fredlund, 1984). Most of the
programs provided an automated version of the existing
methods of slope stability analysis. The need for auto-search
led to the use of sophisticated optimization algorithms
(Knigman and Krizek, 1973; Narayan and Ramamurthy,
1980). But such earlier attempts were based on the
assumption of circular slip surfaces. Successful use of
optimization techniques in slope stability analysis without
any a —priori assumption regarding the shape of critical
surface has been reported (Martin, J. B., 1982; Arai, K.
and Tagyo, K., 1985; Bhattacharya, G. 1990). However,
these analyses have been made by considering slices to
be vertical and also traditional optimization algorithms
have been used for automated search of critical slip
surface and factor of safety.

The methods in use include a rectangular or trapezoidal
grid search and simplex optimization. For noncircular slip
surfaces, this is more complicated, as the number of
variables to be optimized can be substantially larger. The
traditional mathematical optimization methods that have
been used include dynamic programming, conjugate-gradient,
random search, and simplex optimization. The main short-
coming of these optimization techniques is the uncertainty
as to the robustness of the algorithms to locate the global
minimum factor of safety rather than the local minimum
factor of safety for complicated and non-homogeneous
geological subsoil conditions.

We proposed in this paper an alternative method of
determining the critical slip surface using a genetic-based
evolution technique called genetic algorithms (GAs). GAs
have been found wide spread application in variety of
problem domains because of their minimal requirement,
ease of operation, global perspective. The GA is becoming
increasingly popular in engineering optimization problems
because it has been shown to be suitably robust for a
wide variety of problems. The incorporation of genetic
algorithms in the slope stability analysis will be described.
Examples are presented to demonstrate the effectiveness
of the proposed approach. The critical acceleration K.

required to bring the slope to a condition of limiting
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equilibrium 1s given by
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inter slice faces.

i, (P, )1-+1 are the water pressures on the inclined
U; is the pore water pressure on the base of the slice.
The coefficient of critical acceleration (K¢) is calculated

by using the equation 1. If for a slope K. is not equal

to zero, the static factor of safety is calculated by reducing
the shear strength simultaneously on all sliding surfaces
until the minimum K. is obtained. This is achieved by

the following substitutions in equations 4 to 8.

!
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Where, f; = local factor of safety along inter slice faces.
fi = F = average factor of safety along the
surface, if F>1.1; otherwise fz = 1.1, have been
adopted.

If there is no tension crack, then E; = Ey+ = 0. The

forces acting on the sides and base of each slide are found
by the progressive solution of the following equations,

starting from the known condition that E; = 0.
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The normal stresses acting across the base and the sides
of a slice are calculated as

follows:

(03), =V, = U, )cos e, /b, (13)

(o1), =(E,~(P,), )4, (14)

1.1 Design Variables, Objective Function and Con-
straints

After the stability equations are derived it is necessary
to identify the design variables and objective function,
which control the analysis and are to be estimated. For
this it is necessary to follow a set of iterative procedure
to find the minimum value of the objective function and
the corresponding values of the design variables at the
optimal point. However, the search for the optimal values
of the objective function and the corresponding design
vector cannot be made unrestrictedly. Some design restric-
tions called constraints are to be tmposed so that the
obtained solution is physically meaningful. The design
variables, objective function and constraints that are relevant

to the present study are as follows:

1.2 Design Variables

The discretization model of the soil slope 1s shown 1n

Fig 1. Referring to the figure the identification of design

variables are made as follows:

The design vector D 1s,

D" =(F,a,,a,,...... O, 1,0,0y 50 b, X, X7, 27 ) (15)
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Fig. 1. Discretization model for with inclined slices

Where, F = average factor of safety along the slip
surface.

b,b,s...... ,bn= width of nth slices.

P PITRERY , &, 1= base inclination of the slices with

horizontal, positive in anti-clockwise direction.

O[5 0yyernn. ,0,_,= angle of inclination of inclined faces

with vertical, positive in clockwise direction.

X,= distance of starting point of the slip surface from

the bottom corner of the slope.

Xr,Zr= x and z coordinates of tension crack respec-

tively.

1.3 Objective Function

Once the design variables are identified, the function,
which is to be optimized, called objective function and
denoted by F (D) should be developed. In this case, by
taking only the force equilibrium, minimization of factor
of safety subjected to the condition that the value of K.
should be zero is the objective. In this case the solution

is achieved by putting the value of K. as a constraint.

Here, F (D) = F (16)

1.4 Design Constraints

To ensure that the obtained solution is physically
meaningful, the following design constraints need to be
imposed.

The critical surface should be concave when looked
from the top.

As the soil cannot take tension, the developed normal
stress at the base of the slice should be positive to avoid

generation of tension in the soil and inconsistent direction
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of shear.

Normal stresses generated on the inclined mter slice
faces should be positive to avoid development of tension
there.

Since the value of Kc should be very small, the
following constraint has been put on K.. Minimization of
the objective function should result in values of K. tending
to zero.

The last point (b) of the critical slip surface should not

mtersect the sloping portion.

2. Genetic Algorithm Tool

Genetic algorithm is a search technique based on the
principle and mechanism of natural selection and evaluation
where the stronger individuals are likely to survive in a
competing environment. The GA operates on an iterative
procedure on a set (population) of candidate solution of
the problem to be optimized. Each candidate (chromosome)
of this set is a concatenated version of the binary
substrings representing design variables of the problems
to be optimized. Initially these candidate solutions are
generated randomly which are then altered probabilistically
and carried forward for next iteration (or genecration)
guided by three basic processes namely selection,
crossover and mutation. The fitness in a GA technology
is nothing but the value of objective function. Thus each
solution string is associated with a fitness value. (1)
selecting, according to the fitness value, some of the
solution strings of the present generation and aiso the
resulting combination and (2) rejecting others so as to
keep the population size constant form a new generation
of solution. While selection operation makes more copies
of better string, the crossover parameter controls over the
creation of new string by exchanging information among
the strings. In order to preserve some of the good strings
that are present in the population, selection of strings for
the crossover is done with a probability. Mutation operator
acts as a switch when the population becomes homogeneous
due to iterative use of cross over and mutation operations.

The actual optimization process requires the values of

some GA parameters such as string length of each decision
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variable, population size, crossover parameters. Based on
the desired accuracy, the string length for each decision

variable is taken.

2.1 Methodology

In order to apply GA, the slope stability problem is
defined in terms of certain design variables. The function
to be optimized (objective function) and the guiding rules

(constraints) are expressed in terms of these design variables.

2.2 GA Based Problem Formulation

In the context of genetic algorithm, the present problem

has been put into the mathematical framework as follows:

Find (x1,X2,"****..,Xm) to minimize F(x) subject to gj(x)
> (0 for j = 1,2, m.
Where, Xi,Xa,*:**..,Xm represents the design variables

corresponding to the base inclination of the slices, base
widths, locus of start point, and position of tension crack.
The terms gj(x) are set of j constraints. F(x) denotes either
objective function or the sum of objective function and
penalty term as discussed later.

The objective function is taken as the factor of safety
of the slope.

2.3 Fitness Function

Fitness of any string is the value returned to GA, based
on which GA operators modify the population. In present
problem Fit(x) is used as fitness function which denotes
the factor of safety with penalties after applying trans-
formation to convert maximization problem to the minimum
one. GA operators minimize F(X) which in furn reduces
the penalties and factor of safety of the given slope.

Transformation:

As GAs are basically maximization search techniques,
to convert the minimization problem to maximization one,
many types of transformations are available. In the present

formulation the following transformation is used.

1
1+ F(x) (17)

F it(x) =



Where, Fit(x) 1s the Fitness function and F(x) is the

objective function.

2.4 Constraint Handling

Various physical and behavior constraints are used to
solve this class of problems. To take care of constraints,
the reproduction operator may be modified so that if the
solution 1s feasible (one or more constraints are violated),
the string 1s not copied to the mating pool. The problem
of finding a feasible solution is as difficult as the finding
of the optimal solution, especially when the number of
design variables and the design constraints are more. This
penalty terms are usually used to take care of these
constraints. So, in constrained optimization case, instead
of using the objective function as fitness, each constraint’s
violation is added to the objective function. As in the
present problem the constraints are taken in the normalized
form, and a single penalty coefficient is taken here. Hence

the composite function reduces to

Fony ()= F) 1, 336, (1) -

Where, omp (x ) is the composite function, G, (x) is the
constraint term applied to each variable, 7..,= total number

of constraints and 7, 1s the penalty parameter.

3. Results

The present methodology is validated with the help of

a published example.

3.1 Example Problem

A problem (Spencer, 1967, Figure 2) is considered for
the validation of the optimization formulation of predicting
the mimnimum factor of safety and corresponding critical
slip surface. The same problem has been reanalyzed and
reported by Bhattacharya (1990) in order to validate his
proposed direct and indirect optimization formulation of
stability computations using vertical slices as reported in

literature. Here, by using the vertical slices, the same

problem has been reanalyzed and reported. The results
obtained are compared with that of Bhattacharya (1990)
and some other solutions reported in the literature.

This problem has been solved in conjunction with
genetic algorithms by considering the fatled soil mass
bounded by the failure surface and the free ground surface
to be made up of a number of vertical slices. The
following GA parameters have been found suitable for
solution of this class of problem after successive numerical
experimentations as shown in Table 1.

In the present method by taking interslice faces vertical
and by taking 4, 6, 8, 10 and 12 number of slices, the
factor of safety and the critical slip surface is obtained.
In the present analysis no tension crack is taken and the
starting point of the slip surface is taken at the toe of
the slope.

The effect of number of slices on critical slip surface
and the factor of safety of the slope are critically examined
by using genetic algorithms. The results are shown in
Table 2, and Figure 3. The critical accelerations associated
with the critical slip surfaces corresponding to different
number of slices are also indicated in the Table 2. From
the Table 2 it is seen that with the increase in the number
of slices from 4 to 8, the obtained factor of safety
decreases. After 8 number of slices the factor of safety
increases. However the change in factor of safety with
the change in number of slices is marginal. Also, from
Figure 3, it is shown that the critical slip surfaces obtained

with 4, 6, 8, 10 and 12 number of slices fall in a narrow

T cf v =0.02
i’ = 40

H =305m Fo= 0.5

|

Table 1. GA parameters

Fig. 2. Spencer’'s problem

Population size 20
Probability of crossover (Pc) 0.8
Probability of mutation (Pr) 0.1

Total string length 16
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Table 2. Factor of safety and critical acceleration factor for different numbers of vertical slices

Surface Number of slices Factor of safety Critical acceleration factor (K)
1 4 1.06063 0.000072
2 6 1.04593 0.000049
3 8 1.03816 —0.000063
4 10 1.09061 —0.000048
3} 12 1.10861 0.000903
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Table 3. Comparison of Solutions with other investigators

Surface Investigator Factor of Safety
1 Patra et al. (2003) 1.04
2 Bhattacharya (1990) 1.00
3 Spencer (1967) 1.07
4 Present Method 1.04
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Fig. 3. Effect of number of vertical slices on the critical slip surface
(probiem 2)
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Fig. 4. Comparison of critical slip surfaces by different methods

zone which 1s also observed by Janbu (1979). The critical
accelerations obtained in all these cases are sufficiently
small to be taken to be zero as shown in Figure 3. Thus
it 1s prudent to take 8 numbers of slices if vertical slices
are considered in the analysis.

In Figure 4 the critical slip surface obtained by 8 number
of slices has been compared with the solution reported
by Bhattacharya (1990) using Janbu’s method with non-linear
programming and Patra et al. (2003) using Sarma’s method
with non-linear programming. From the figure it is seen

that the solutions obtained are in close agreement with
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the known solutions reported in the literature. All these
critical surfaces fall in a zone rather than a well-defined

failure surface.

4. Concluding Remarks

It has been shown that the GA method that uses
probabilistic transition rules rather than deterministic rules
means that the search is normally not trapped in local
optima unlike other traditional methods. This method is
capable of obtaining the optimal solution starting from
broad range of domain of design variables.

The critical slip surfaces obtained through GAs crowd
over a zone instead of single well-defined surface. The
factor of safety obtained by this method is not very much

sensitive to the number of slices.
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