• Title/Summary/Keyword: equations of motion

Search Result 2,339, Processing Time 0.03 seconds

Extension of the LQR to Accomodate Actuator Saturation Bounds for Flexible Space Structures (제한된 제어입력을 갖는 유연우주구조물에 대한 확장된 LQR)

  • Lee, Sang-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.71-77
    • /
    • 2002
  • We consider the simultaneous slewing and vibration suppression control problem of an idealized structural model which has a rigid hub with two cantilevered flexible appendages and finite tip masses. The finite clement method(FEM) is used to obtain linear finite dimensional equations of motion for the model. In the linear quadratic regulator(LQR) problem, a simple method is introduced to provide a physically meaningful performance index for space structure models. This method gives us a mathematically minor but physically important modification of the usual energy type performance index. A numerical procedure to solve a time-variant LQR problem with inequality control constraints is presented using the method of particular solutions.

Development of Piezoelectric Energy Harvesting Device and Experiments (압전체를 이용한 에너지 수집 장치 개발 및 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Kang, Ho-Yong;Kim, Nae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

Seismic Effect of LRB Base Isolator on Bridges (LRB 기초분리장치의 교량 내진효과)

  • Hwang, Eui Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.13-18
    • /
    • 1993
  • The purpose of this study is to analyze the seismic effects of Lead Rubber Bearing base isolators on bridges. Base isolation is the tool to minimize the effect of earthquake before the seismic force is transfered to the structure. Currently, many structures including the buildings, power plants, and bridges, were built and planned with base isolation method. The simple model is developed for bridges with Lead Rubber Bearings. Equations of motion are solved by Newmark ${\beta}$ method. Springs representing the base isolators are assumed as bilinear springs and piers are modeled as nonlinear springs implementing Q-HYST model. Analysis is performed for the selected bridge. El Centro (N-S) earthquake(1940) is used. Deck displacement, pier ductility and pier shear force are calculated for the various Lead Rubber Bearings.

  • PDF

Dynamic Modeling of Piezoelectric Energy Harvesting Device and Experiments (압전 에너지 수집 장치의 동적모델링 및 실험)

  • Kwak, Moon-K.;Kim, Ki-Young;Kang, Ho-Yong;Kim, Nae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.632-641
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

Parametric Study on Dynamic Stability Behaviors of Beck's Column considering Shear Deformation and Damping Effects (전단변형 및 감쇠효과를 고려한 비보존력을 받는 외팔기둥의 동적 안정성거동에 대한 매개변수연구)

  • Lee, Jun-Seok;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.1-12
    • /
    • 2005
  • For a shear-deformable beam-column element subjected io non-conservative forces, equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter, internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness, damping and mass matrixes derived for the non-conservative system.

Development of Real-time Multibody Vehicle Dynamics Software Part II: Preprocessor and Postprocessor Using MATLAB GUI and VR Toolbox (실시간 다물체 차량동역학 소프트웨어 개발 Part II: Matlab GUI와 VR Toolbox를 이용한 전후처리 프로그램)

  • Ha, Kyoung-Nam;Jeong, Wan-Hee;Kim, Sung-Soo;Jung, Do-Hyun;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.169-175
    • /
    • 2009
  • Real-time multibody vehicle dynamics software has been developed for virtual handling tests. The software can be utilized for HILS(Hardware In the Loop Simulations) and consists of three modules such as a graphical vehicle modeling preprocessor, a real time dynamics solver, and a virtual reality graphic postprocessor for virtual handling tests. In the graphical vehicle modeling preprocessor, vehicle hard point data for a suspension model are automatically converted into multibody vehicle model. In the real time dynamics solver, the efficient subsystem synthesis method is used to create multibody equations of motion for a subsystem by a subsystem. In the virtual reality graphic postprocessor, an animator has been also developed by using Matlab Virtual Reality Toolbox for virtual handling tests.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

Fundamentals of Contact Lens Movement (콘택트렌즈 운동의 기초)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.5-13
    • /
    • 2008
  • Purpose: This review article was written to investigate what kind of forces are acting on the contact lens fitted on the cornea and its subsequent motion. Methods: A capillary action-induced force develops in the tear layer between the lens and cornea, which leads to the restoring force due to difference in layer thickness according to lens rotation. The characteristics of the lens movement can be determined by the various factors such as friction between eyelid and lens, acceleration force based on blinking and the restoring force incorporated with the viscous damping force. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped motion of lenses. The model predicts the time dependence of lenses during and after the blink varying the BC, blink period and eyelid pressure. Results: It was found that both the blink period and lid pressure increases the movement increases because of the enhanced lid friction. As the BC increases the viscous damping reduces due to the lacrimal layer's increase which resulted in the enhanced lens motion. After blink the lens illustrates the damped oscillation because of the restoring force by the increased lacrimal layer thickness and reduced viscous resistance. The time for the lens to return to the equilibrium shortens as the BC increase because of the resistance reduction. Conclusions: The movement of the contact lens is governed by the characteristics of the lacrimal layer between the lens and cornea as well as the lid blink.

  • PDF

Development of a force measurement device for curling sweeping with load cells (로드셀을 이용한 컬링 스위핑 힘 측정 장치 개발)

  • Lee, Sangcheol;Kim, Taewhan;Kil, Sekee;Choi, Sanghyup
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.49-56
    • /
    • 2017
  • Curling sweeping is one of important motion to control the position of the curling stone, and sweeping speed and applied force to the broom pad are major research subjects. In this study, a device was developed to measure the force applied to the curling broom pad in curling sweeping motion, and two load cells were mounted between the broom pad and pad holder. Analog signals generated from the load cells were sampled about 300 times per second using a micro controller, and then converted to 10-bit digital signals. Calibration of the load cell and set up of regression equations to convert the measured electrical signals into mass (force) was done by three M1 class weights, and the developed system was designed as wearable device to minimize increasing of total weight of the broom. Same force was applied to the developed system and a force plate that was using as a reference force measurement system in field of sports, and the difference between the measured values were showed about $0.909{\pm}1.375N$(mean and standard deviation). The developed system could be applied other kinds of study which required force measurement function similar to sweeping motion.

Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure (타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰)

  • Maeng, Young-Jun;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.