• Title/Summary/Keyword: epithelial-mesenchymal transition (EMT)

Search Result 135, Processing Time 0.024 seconds

What is a Cancer Cell? Why does it Metastasize?

  • Hegde, Mahabaleshwar Vishnu;Mali, Aniket Vijay;Chandorkar, Shubha Sandeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3987-3989
    • /
    • 2013
  • This is a commentary on what a cancer cell is and why cancer cells metastasize. Normal cell get transformed to a cancer cell, with excessive production of free radicals that mutate the DNA of a normal cell. The immortality and malignant stage of transformed cell is maintained by higher GSH levels. With the faster rate of proliferation, when the cancer cell finds the place of origin is not conducive to its further growth, cancer cell chooses to take the metastatic course. We argue that if we can stop the exit of cancer cell from place of origin, cancer spread can be stopped or even cured.

MicroRNAs: promising biomarkers for diagnosis and therapeutic targets in human colorectal cancer metastasis

  • Hur, Keun
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death worldwide. Distant metastasis is a major cause of mortality in CRC. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in the post-transcriptional and translational regulation of gene expression. Many miRNAs are aberrantly expressed in cancer and influence tumor progression. Accumulating studies suggest that multiple miRNAs are actively involved in the CRC metastasis process. Thus, we aim to introduce the role of miRNAs in multi-steps of CRC metastasis, including cancer cell invasion, intravasation, circulation, extravasation, colonization, angiogenesis, and epithelial-mesenchymal transition (EMT). Moreover, we suggest the potential application of miRNAs as biomarkers for CRC patients with metastasis. [BMB Reports 2015; 48(4): 217-222]

Anti-migration and anti-invasion effects of LY-290181 on breast cancer cell lines through the inhibition of Twist1

  • Jiyoung Park;Sewoong Lee;Haelim Yoon;Eunjeong Kang;Sayeon Cho
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.410-415
    • /
    • 2023
  • Breast cancer has become the most common cancer among women worldwide. Among breast cancers, metastatic breast cancer is associated with the highest mortality rate. Twist1, one of the epithelial-mesenchymal transition-regulating transcription factors, is known to promote the intravasation of breast cancer cells into metastatic sites. Therefore, targeting Twist1 to develop anti-cancer drugs might be a valuable strategy. In this study, LY-290181 dose-dependently inhibited migration, invasion, and multicellular tumor spheroid invasion in breast cancer cell lines. These anti-cancer effects of LY-290181 were mediated through the down-regulation of Twist1 protein levels. LY-290181 inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways. Therefore, our findings suggest that LY-290181 may serve as a basis for future research and development of an anti-cancer agent targeting metastatic cancers.

Quantitative Changes in Tumor-Associated M2 Macrophages Characterize Cholangiocarcinoma and their Association with Metastasis

  • Thanee, Malinee;Loilome, Watcharin;Techasen, Anchalee;Namwat, Nisana;Boonmars, Thidarut;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3043-3050
    • /
    • 2015
  • The tumor microenvironment (TME) includes numerous non-neoplastic cells such as leukocytes and fibroblasts that surround the neoplasm and influence its growth. Tumor-associated macrophages (TAMs) and cancerassociated fibroblasts (CAFs) are documented as key players in facilitating cancer appearance and progression. Alteration of the macrophage (CD68, CD163) and fibroblast (${\alpha}-SMA$, FSP-1) cells in Opisthorchis viverrini (Ov) -induced cholangiocarcinoma (CCA) was here assessed using liver tissues from an established hamster model and from 43 human cases using immunohistochemistry. We further investigated whether M2-activated TAMs influence CCA cell migration ability by wound healing assay and Western blot analysis. Macrophages and fibroblasts change their phenotypes to M2-TAMs (CD68+, CD163+) and CAFs (${\alpha}-SMA+$, FSP-1+), respectively in the early stages of carcinogenesis. Interestingly, a high density of the M2-TAMs CCA in patients is significantly associated with the presence of extrahepatic metastases (p=0.021). Similarly, CD163+ CCA cells are correlated with metastases (p=0.002), and they may be representative of an epithelial-to-mesenchymal transition (EMT) with increased metastatic activity. We further showed that M2-TAM conditioned medium can induce CCA cell migration as well as increase N-cadherin expression (mesenchymal marker). The present work revealed that significant TME changes occur at an early stage of Ov-induced carcinogenesis and that M2-TAMs are key factors contributing to CCA metastasis, possibly via EMT processes.

Anticarcinogenic Effect of S-allylcysteine (SAC) (S-allylcysteine의 항암효과)

  • Kong, Il-Keun;Kim, Hyun Hee;Min, Gyesik
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1331-1337
    • /
    • 2015
  • S-allylcysteine (SAC) is an aged garlic derived water soluble organosulfur compound and has been suggested to have anticarcinogenic activity against diverse types of cancer cells. This review summarizes the cellular signaling pathways and molecular mechanisms whereby SAC exerts its effects on cellular proliferation, apoptosis, cell cycle progression and metastasis based on the results from both in vitro and in vivo studies. SAC activates proapoptotic proteins including Bax and caspase-3, but suppresses antiapoptotic Bcl-2 family proteins to bring about cancer cell death through mitochondria-mediated intrinsic pathway. SAC also inhibits cellular proliferation by inducing cell cycle arrest in which SAC reduces expression and activation of NF-κB, cyclins, Cdks, PCNA and c-Jun, but elevates expression of cell cycle inhibitor proteins p16 and p21 through suppression of both PI3K/Akt/mTOR and MAPK/ERK signaling pathways. And, SAC inhibits invasion and metastasis of cancer cells by inducing suppression of both angiogenesis and epithelial-mesenchymal transition (EMT) through decreased cyclooxygenase (COX)-2 expression and increased E-cadherin expression which were then caused by suppression of inhibitory transcription factors Id-1 and SLUG from SAC-mediated inactivation of both MAPK/ERK and PI3K/Akt/mTOR/NF-κB signaling pathways. Furthermore, SAC prevents toxic compound-induced carcinogenesis by inducing antioxidant enzymes such as glutathione-s-transferase (GST). Thus, SAC can be considered as a potential chemotherapeutic agent for the prevention and treatment of cancer.

Snail Switches 5-FU-induced Apoptosis to Necrosis through Akt/PKB Activation and p53 Down-regulation (Snail의 Akt/PKB의 활성화와 p53의 downregulation를 통한 5-FU-induced apoptosis의 necrosis로의 전환)

  • Lee, Su-Yeon;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Cho-Hee;Jeong, Eui-Kyong;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1018-1023
    • /
    • 2012
  • Snail is a zinc finger transcription factor that induces epithelial-to-mesenchymal transition (EMT), which promotes tumor invasion and metastasis by repressing E-cadherin expression. In addition, Snail restricts the cellular apoptotic response to apoptotic stimuli or survival factor withdrawal; however, its molecular mechanism remains largely unknown. In this study, we have investigated the mechanism underlying Snail-mediated chemoresistance to 5-fluorouracil (5-FU), one of the most widely used anti-cancer drugs. When Snail was overexpressed by doxycycline (DOX) in MCF-7 #5 cells, it inhibited 5-FU-induced apoptotic cell death and switched the cell death mode to necrosis. Snail expression, either by DOX treatment in MCF-7 #5 cells or by the transfection of Snail expression vectors pCR3.1-Snail-Flg, phosphorylation-resistant pCR3.1-S104, and 107A Snail-Flg in MCF-7 cells specifically induced PTEN down-regulation/inactivation and Akt/PKB activation, without affecting ERK1/2 activity. In addition, Snail prominently suppressed 5-FU-induced increases in p53 levels. These findings demonstrate that Snail switches 5-FU-induced apoptosis to necrosis through the activation of Akt/PKB and the down-regulation of p53 levels.

Interaction between Trichomonas vaginalis and the Prostate Epithelium

  • Kim, Jung-Hyun;Han, Ik-Hwan;Kim, Sang-Su;Park, Soon-Jung;Min, Duk-Young;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis. The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis=1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-$1{\beta}$, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.

Comparative Proteomic Profiling of Pancreatic Ductal Adenocarcinoma Cell Lines

  • Kim, Yikwon;Han, Dohyun;Min, Hophil;Jin, Jonghwa;Yi, Eugene C.;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.888-898
    • /
    • 2014
  • Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and -sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.

Itch E3 Ubiquitin Ligase Positively Regulates TGF-β Signaling to EMT via Smad7 Ubiquitination

  • Park, Su-Hyun;Jung, Eun-Ho;Kim, Geun-Young;Kim, Byung-Chul;Lim, Jae Hyang;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • TGF-${\beta}$ regulates pleiotropic cellular responses including cell growth, differentiation, migration, apoptosis, extracellular matrix production, and many other biological processes. Although non-Smad signaling pathways are being increasingly reported to play many roles in TGF-${\beta}$-mediated biological processes, Smads, especially receptor-regulated Smads (R-Smads), still play a central mediatory role in TGF-${\beta}$ signaling for epithelial-mesenchymal transition. Thus, the biological activities of R-Smads are tightly regulated at multiple points. Inhibitory Smad (I-Smad also called Smad7) acts as a critical endogenous negative feedback regulator of Smad-signaling pathways by inhibiting R-Smad phosphorylation and by inducing activated type I TGF-${\beta}$ receptor degradation. Roles played by Smad7 in health and disease are being increasingly reported, but the molecular mechanisms that regulate Smad7 are not well understood. In this study, we show that E3 ubiquitin ligase Itch acts as a positive regulator of TGF-${\beta}$ signaling and of subsequent EMT-related gene expression. Interestingly, the Itch-mediated positive regulation of TGF-${\beta}$ signaling was found to be dependent on Smad7 ubiquitination and its subsequent degradation. Further study revealed Itch acts as an E3 ubiquitin ligase for Smad7 polyubiquitination, and thus, that Itch is an important regulator of Smad7 activity and a positive regulator of TGF-${\beta}$ signaling and of TGF-${\beta}$-mediated biological processes. Accordingly, the study uncovers a novel regulatory mechanism whereby Smad7 is controlled by Itch.

Antitumor Effect of Metformin in Combination with Binimetinib on Melanoma Cells

  • Lee, Eunsung;Kwon, Yongjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.25 no.2
    • /
    • pp.93-104
    • /
    • 2021
  • Cutaneous melanoma is a fatal disease for patients with distant metastasis. Metformin is the most widely used anti-diabetic drug, and proved to suppress cell proliferation and metastasis in diverse cancers including melanoma. We previously reported that MEK inhibitor trametinib increases the expression of epithelial-mesenchymal transition (EMT) regulators and melanoma cell motility, which are suppressed by addition of metformin in A375 melanoma cells. To confirm our findings further, we first evaluated the effect of metformin in combination with another MEK inhibitor binimetinib on cell viability in G361 melanoma cells. We then investigated whether binimetinib affects the expression of EMT regulators and cell motility. We finally monitored the effect of metformin on binimetinib-induced cell migration. Cell viability assay showed that combination index (CI) value at ED50 is 0.80, suggesting synergy for the combination of metformin with binimetinib. Our results also revealed that binimetinib increased the expression of EMT regulators such as integrin αV, fibronectin and slug, which correlate well with the enhanced cell migration in wound healing assay. Metformin, on the contrary, suppressed the expression of sparc, integrin αV, fibronectin and N-cadherin with the reduced cell motility. The combination treatment showed that metformin counteracts the binimetinib-induced increase of cell motility. Overall, these results suggest that metformin with binimetinib might be useful as a potential therapeutic adjuvant against cell survival and metastatic activity in melanoma patients.