DOI QR코드

DOI QR Code

Snail Switches 5-FU-induced Apoptosis to Necrosis through Akt/PKB Activation and p53 Down-regulation

Snail의 Akt/PKB의 활성화와 p53의 downregulation를 통한 5-FU-induced apoptosis의 necrosis로의 전환

  • Lee, Su-Yeon (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeon, Hyun-Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Ju, Min-Kyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Kim, Cho-Hee (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Eui-Kyong (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Park, Hye-Gyeong (Nanobiotechnology Center, Pusan National University) ;
  • Kang, Ho-Sung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 이수연 (부산대학교 자연과학대학 분자생물학과) ;
  • 전현민 (부산대학교 자연과학대학 분자생물학과) ;
  • 주민경 (부산대학교 자연과학대학 분자생물학과) ;
  • 김초희 (부산대학교 자연과학대학 분자생물학과) ;
  • 정의경 (부산대학교 자연과학대학 분자생물학과) ;
  • 박혜경 (부산대학교 나노바이오테크놀러지 센터) ;
  • 강호성 (부산대학교 자연과학대학 분자생물학과)
  • Received : 2012.07.09
  • Accepted : 2012.08.16
  • Published : 2012.08.30

Abstract

Snail is a zinc finger transcription factor that induces epithelial-to-mesenchymal transition (EMT), which promotes tumor invasion and metastasis by repressing E-cadherin expression. In addition, Snail restricts the cellular apoptotic response to apoptotic stimuli or survival factor withdrawal; however, its molecular mechanism remains largely unknown. In this study, we have investigated the mechanism underlying Snail-mediated chemoresistance to 5-fluorouracil (5-FU), one of the most widely used anti-cancer drugs. When Snail was overexpressed by doxycycline (DOX) in MCF-7 #5 cells, it inhibited 5-FU-induced apoptotic cell death and switched the cell death mode to necrosis. Snail expression, either by DOX treatment in MCF-7 #5 cells or by the transfection of Snail expression vectors pCR3.1-Snail-Flg, phosphorylation-resistant pCR3.1-S104, and 107A Snail-Flg in MCF-7 cells specifically induced PTEN down-regulation/inactivation and Akt/PKB activation, without affecting ERK1/2 activity. In addition, Snail prominently suppressed 5-FU-induced increases in p53 levels. These findings demonstrate that Snail switches 5-FU-induced apoptosis to necrosis through the activation of Akt/PKB and the down-regulation of p53 levels.

Snail은 E-cadherin 발현을 직접 억제하는 zinc finger transcription factor로서, 암세포의 invasion과 metastasis를 촉진시키는 epithelial-mesenchymal transition (EMT)를 유발한다. 또한 Snail은 세포사멸 자극과 세포 생존물질의 제거로 인한 세포사멸에 대해 저항성을 나타낸다. 그러나 이에 대한 분자기작은 잘 알려져 있지 않다. 본 연구에서는 가장 널리 사용되는 항암제 중의 하나인 5-fluorouracil (5-FU)에 의한 세포사멸에 대한 Snail의 저항성 기작에 대하여 조사하였다. MCF-7 #5 세포주에 doxycycline (DOX)을 처리하여 Snail을 과발현시킨 세포에서 5-FU에 의한 세포사멸이 억제되고 세포괴사가 일어남을 확인하였다. DOX 처리 및 Snail expression vectors인 pCR3.1-Snail-Flg와 phosphorylation-resistant mutant Snail vector인 pCR3.1-S104, 107A Snail-Flg을 이용하여 Snail을 과발현 시킨 경우 ERK1/2의 활성에는 영향을 주지 않는 반면 PTEN 발현억제 및 불활성화, 그리고 Akt/PKB 활성화가 유도됨을 관찰하였다. 또한, Snail은 5-FU에 의한 p53의 발현을 억제한다는 사실을 확인하였다. 따라서 Snail은 prosurvival kinase인 Akt/PKB의 활성화와 p53 억제를 통해 5-FU에 의한 세포사멸을 세포괴사로 전환하는 것으로 생각된다.

Keywords

References

  1. Balmanno, K. and Cook, S. J. 2009. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 16, 368-377. https://doi.org/10.1038/cdd.2008.148
  2. Escriva, M., Peiro, S., Herranz, N., Villagrasa, P., Dave, N., Montserrat-Sentis, B., Murray, S. A., Franci, C., Gridley, T., Virtanen, I. and Garcia de Herreros, A. 2008. Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Mol. Cell. Biol. 28, 1528-1540. https://doi.org/10.1128/MCB.02061-07
  3. Gottlieb, T. M., Leal, J. F., Seger, R., Taya, Y. and Oren, M. 2002. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299-1303. https://doi.org/10.1038/sj.onc.1205181
  4. Hoshino, H., Miyoshi, N., Nagai, K., Tomimaru, Y., Nagano, H., Sekimoto, M., Doki, Y., Mori, M. and Ishii, H. 2009. Epithelial-mesenchymal transition with expression of SNAI1-induced chemoresistance in colorectal cancer. Biochem. Biophys. Res. Commun. 390, 1061-1065. https://doi.org/10.1016/j.bbrc.2009.10.117
  5. Kajita, M., McClinic, K. N. and Wade, P. A. 2004. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol. Cell. Biol. 24, 7559-7566. https://doi.org/10.1128/MCB.24.17.7559-7566.2004
  6. Kim, C. H., Jeon, H. M., Lee, S. Y., Ju, M. K., Moon, J. Y., Park, H. G., Yoo, M. A., Choi, B. T., Yook, J. I., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Implication of snail in metabolic stress-induced necrosis. PLoS One 6, e18000. https://doi.org/10.1371/journal.pone.0018000
  7. Kurrey, N. K., Jalgaonkar, S. P., Joglekar, A. V., Ghanate, A. D., Chaskar, P. D., Doiphode, R. Y. and Bapat, S. A. 2009. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27, 2059-2068. https://doi.org/10.1002/stem.154
  8. Lee, S. Y., Jeong, E. K., Jeon, H. M., Kim, C. H. and Kang, H. S. 2010. Implication of necrosis-linked p53 aggregation in acquired apoptotic resistance to 5-FU in MCF-7 multicellular tumour spheroids. Oncol. Rep. 24, 73-79.
  9. Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/snail signaling regulates cytochrome c oxidase and glucose metabolism. Cancer Res. 72, 3607-3617. https://doi.org/10.1158/0008-5472.CAN-12-0006
  10. Levine, A. J., Feng, Z., Mak, T. W., You, H. and Jin, S. 2006. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev. 20, 267-275. https://doi.org/10.1101/gad.1363206
  11. Longley, D. B., Harkin, D. P. and Johnston, P. G. 2003. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330-338. https://doi.org/10.1038/nrc1074
  12. Lotze, M. T. and Tracey, K. J. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5, 331-342. https://doi.org/10.1038/nri1594
  13. Nieto, M. A. 2002. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell. Biol. 3, 155-166. https://doi.org/10.1038/nrm757
  14. Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415-428. https://doi.org/10.1038/nrc2131
  15. Pelicano, H., Xu, R. H., Du, M., Feng, L., Sasaki, R., Carew, J. S., Hu, Y., Ramdas, L., Hu, L., Keating, M. J., Zhang, W., Plunkett, W. and Huang, P. 2006. Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J. Cell Biol. 175, 913-923. https://doi.org/10.1083/jcb.200512100
  16. Qiu, W., Leibowitz, B., Zhang, L. and Yu, J. 2010. Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis. Oncogene 29, 1622-1632. https://doi.org/10.1038/onc.2009.451
  17. Raguz, S. and Yague, E. 2008. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br. J. Cancer 99, 387-391. https://doi.org/10.1038/sj.bjc.6604510
  18. Scaffidi, P., Misteli, T. and Bianchi, M. E. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195. https://doi.org/10.1038/nature00858
  19. Vakkila, J. and Lotze, M. T. 2004. Inflammation and necrosis promote tumour growth. Nat. Rev. Immunol. 4, 641-648. https://doi.org/10.1038/nri1415
  20. Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I. and Nieto, M. A. 2004. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131-1143. https://doi.org/10.1101/gad.294104
  21. Vivanco, I. and Sawyers, C. L. 2002. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501. https://doi.org/10.1038/nrc839
  22. Wilson, T. R., Longley, D. B. and Johnston, P. G. 2006. Chemoresistance in solid tumours. Ann. Oncol. 17 Suppl 10, x315-324. https://doi.org/10.1093/annonc/mdl280
  23. Wu, W. S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M. and Look, A. T. 2005. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123, 641-653. https://doi.org/10.1016/j.cell.2005.09.029
  24. Yamaguchi, H. and Wang, H. G. 2001. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20, 7779-7786. https://doi.org/10.1038/sj.onc.1204984
  25. Yook, J. I., Li, X. Y., Ota, I., Hu, C., Kim, H. S., Kim, N. H., Cha, S. Y., Ryu, J. K., Choi, Y. J., Kim, J., Fearon, E. R. and Weiss, S. J. 2006. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8, 1398-1406. https://doi.org/10.1038/ncb1508
  26. Zhang, N., Yin, Y., Xu, S. J. and Chen, W. S. 2008. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13, 1551-1569. https://doi.org/10.3390/molecules13081551
  27. Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. and Thompson, C. B. 2004. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272-1282. https://doi.org/10.1101/gad.1199904

Cited by

  1. Capsosiphon fulvescens glycoprotein inhibits AGS gastric cancer cell proliferation by downregulating Wnt-1 signaling vol.43, pp.5, 2013, https://doi.org/10.3892/ijo.2013.2079
  2. Necrotic cell death caused by exposure to graphitic carbon-coated magnetic nanoparticles vol.103, pp.9, 2015, https://doi.org/10.1002/jbm.a.35418