• Title/Summary/Keyword: epidermal lipid

Search Result 46, Processing Time 0.019 seconds

PREVENTIVE EFFECTS OF RED GINSENG SAPONIN ON HYPERKERATOSIS: ULTRASTRUCTURAL OBSERVATION AND LIPID ANALYSIS

  • Kim, Hyeyoung
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.129-139
    • /
    • 1991
  • Preventive effect of red ginseng saponin on experimentally-induced hyperkeratosis was investigated by ultrastructural observation, skin weight and epidermal lipid analysis. Hexadecane increased skin weight per unit area and epidermal lipids, free fatty acids, cholesterol and triglyceride in guinea pig skin. Topical application of ginseng saponin reduced these hyperkeratotic responses regradless of the concentration and the purity of ginseng saponin. Ultrastructurally, lipids and empty space-containing multiple horny cells were piled and nuclear remnants, desmosome, desmosomal bodies, tight junction were shown in the stratum corneum of hexadecane-treated skin.

  • PDF

TOPICAL GINSENG TREATMENT IN EXPERIMENTAL HYPERKERATOSIS

  • Kim, Hye-Young;Jin, Sung-Ha;Kim, Shin-Il
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • Effect of red ginseng treatment on experimentally induced hyperkeratosis was investigated by light microscopic observation scanning electron microxcope (SEM) examination, epidermal enzyme activities nd lipid contents. Both light microscopic observation and SEM examination showed that hexadecane induced epidermal hyperplasia, hypertrophy and hyperkeratosis by increasing the numbers as well as the sizes of epidermal cells including desquamating horny cells. The superficial horny cells were protruded around the base of hair shaft. Among red ginseng components, only saponin treatment inhibited epidermal hyperplasia and hyperkeratosis by reducing the thickness of epidermis and arranging the cornified cells. Saponin from korean red ginseng inhibited abnormally increased epidermal LDH, ICD and G6PDH activities and reduced the contents of epidermal lipids induced by hexadecane. It seems that red ginseng saponin has preventive effect on experimental hyperkeratosis possibly by controlling the enzyme activities involved in epidermal cellular metabolism, resulting in reduced amounts of abnormal epidermal lipids.

  • PDF

Cloning of Epidermis-specific cDNAS Encoding a Lipid Transfer Protein and an Aldehyde Decarbonylase from Senecio odorus

  • Pyee, Jaeho
    • Journal of Plant Biology
    • /
    • v.39 no.3
    • /
    • pp.189-195
    • /
    • 1996
  • The major cuticular components have been shown to be synthesized in the epidermis. Therefore, cloning of epidermis-specific genes could yield information to be used to isolate and characterize the enzymes involved in the cuticle biosynthesis. A subtractive cDNA library was prepared from Senecio odorus in which epidermis-specific cDNAs were enriched. Differential screening of the library using epidermal and non-epidermal probes revealed two cDNAs. One of them designated epi425 was identified, based on the sequence homology, as a member of a new class in the LTP gene family and the other clone designated epi23 as a gene encoding an aldehyde decarbonylase. Northern blot analyses showed that epi425 and epi23 cDNAs hybridized with a transcript of about 600 and 2, 100 nucleotides, respectively, from the epidermis but not from the non-epidermal tissues. Further characterization of these clones will provide more information on the mechanism of the cuticle biosynthesis.

  • PDF

Dietary effect of red ginseng extracts mixed with torilis fructus and corni fructus on the epidermal levels of ceramides and ceramide related enzyme proteins in uv-induced hairless mice (자외선이 조사된 무모생쥐에서 홍삼, 사상자, 산수유 혼합 추출물 섭취가 표피 세라마이드 함량 및 관련 효소의 발현에 미치는 영향)

  • Lee, Yun-Ju;Oh, Inn-Gyung;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.45 no.3
    • /
    • pp.211-217
    • /
    • 2012
  • UV-irradiation is a major factor of photo-aged skin, by which pigmentation, wrinkles and laxity are increased. In addition, the epidermal barrier is disrupted, ultimately causing dryness in photo-aged skin. As an effort to search dietary sources for improving the dryness of UV irradiated skin, the dietary effect of red ginseng based functional foods on the epidermal level of ceramides, a major lipid maintaining epidermal barrier, was determined in this study. Albino hairless mice were fed either a control diet [group UV (UV-irradiated control)] or diets with 0.5% (group M0.5) or 1% (group M1.0) of red ginseng extracts mixed with Torilis fructus and Corni fructus (66.7% red ginseng) in parallel with UV irradiation for 5 wks. A normal control group (group C) was fed a control diet without UV irradiation for 5 wks. The epidermal level of ceramides in group UV was significantly lower than that in group C, in which ceramidase, an enzyme involved in ceramide degradation, was highly expressed. In group M0.5, the epidermal level of ceramide was significantly increased to the level even higher than in group C. In addition, protein expression of serine palmitoyl transferase (SPT), a key enzyme involved in de novo ceramide synthesis, was increased in group M0.5. However the epidermal levels of ceramides as well as of ceramidase protein expression in group M1.0 did not differ from those in group UV. In conclusion, we demonstrate that dietary supplementation of red-ginseng extracts mixed with Torilis fructus and Corni fructus at a level of 0.5% level in diet increased the epidermal level of ceramides coupled with the elevated expression of SPT protein.

The Effect of Multi-lamellar Emulsion (MLE) on Skin Barrier Function: Can an Improve Permeability Barrier Provide a Solution for Itching due to Skin Barrier Malfunction\ulcorner

  • Youm, Jong-kyung;Kim, Yang-hee;Park, Byeong-deog;Jeong, Se-kyoo;Park, Eung-ho;Ahn, Sung-ku;Lee, Seung-hun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.765-779
    • /
    • 2003
  • Physiological lipid mixtures comprised of cholesterol, ceramide and free fatty acid better maintain epidermal homeostasis and have been recently used for dermatoses induced by skin barrier damage, for example for atopic dermatitis and xerotic skin. Itching and dry atopic dermatitis of the skin may be related to altered skin barrier function. In a previous study, the use of multi-lamellar emulsion (MLE), which is a lipid mixtures containing cholesterol, pseudoceramide and free fatty acid, has been shown to accelerate the recovery of the epidermal permeability barrier. In this study, we assessed the efficacy of MLE compared with a currently used anti-itch moisturizer (AIM), the active ingredients of which are menthol and camphor, on barrier recovery after barrier disruption. To clarify the effect of MLE and AIM after acute barrier perturbation, we measured the relation between transepidermal water loss (TEWL) and the barrier recovery rate at 3, 6, 24, and 48 hours after tape stripping hairless mice and then observed changes in the stratum corneum (SC), including the intercellular lipid structure and secretion of lamellar bodies, by electron microscopy. MLE treated skin recover skin barrier function more rapidly, and AIM treated skin delayed barrier repair. Morphological changes in the epidermis, of MLE treated skin revealed well-conserved lipid multi-lamellar structures at 24 h after tape stripping, whereas AIM treated skin showed altered lamellar bilayers within the SC interstices at 48 h. In addition, MLE treated skin showed an increase in the number of LBs and in their secretions and a decrease in the number of SC layers versus AIM treated skin. These results suggest that MLE may accelerate the production of an epidermal permeability barrier in hairless mice by increasing the number and secretion of LB and improve the dryness and itch associated with an altered epidermal permeability barrier.

  • PDF

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

A Study on the Enhancement of Barrier Function and Improvement of Lipid Packing Structure in a 3D Skin Model by Ginsenoside Rg3 (Ginsenoside Rg3 에 의한 3D 피부 모델의 장벽 기능 강화 및 지질 패킹 구조 개선에 관한 연구)

  • Sunyoung Kim;Seol-Hoon Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2023
  • The skin's barrier structure is formed through the differentiation process of epidermal keratinocytes. It consists of corneocytes that are composed of keratin proteins and lipids that fill the spaces between them. During this process, the lipids such as phospholipid that made up the membrane of the basal layer cells of the epidermis are decomposed and replaced with newly synthesized components like ceramide. In this study, the effect of ginsenoside Rg3 components on the packing of the intercellular lipid structure of the skin barrier and the barrier function was confirmed. To confirm this, Rg3 components were treated during the differentiation process of 3D epidermal cells. The FT-IR and TEWL analysis on 3D epidermis showed an enhancement in the orthorhombic lipid packing and an improvement in barrier function. Additionally, in HaCaT cells, an increase in the expression of EVOL1 and EVOL4, which synthesize long-chain lipids, was detected, along with a decrease in CERS6, which synthesizes short-chain ceramide, and an increase in ACER6, which decomposes ceramide using phytosphingosine. This suggests the possibility that Rg3 affects lipid synthesis during the epidermal differentiation process, resulting in changes in barrier function.

Associations among plasma vitamin C, epidermal ceramide and clinical severity of atopic dermatitis

  • Shin, Jihye;Kim, You Jin;Kwon, Oran;Kim, Nack-In;Cho, Yunhi
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.398-403
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Atopic dermatitis (AD), a chronic inflammatory skin disease, is accompanied by disruption of the epidermal lipid barrier, of which ceramide (Cer) is the major component. Recently it was reported that vitamin C is essential for de novo synthesis of Cer in the epidermis and that the level of vitamin C in plasma is decreased in AD. The objective of this study was to determine the associations among clinical severity, vitamin C in either plasma or epidermis, and Cer in the epidermis of patients with AD. SUBJECTS/METHODS: A total of 17 patients (11 male and 6 female) aged 20-42 years were enrolled. The clinical severity of AD was assessed according to the SCORAD (SCORing Atopic Dermatitis) system. Levels of vitamin C were determined in plasma and biopsies of lesional epidermis. Levels of epidermal lipids, including Cer, were determined from tape-stripped lesional epidermis. RESULTS: The clinical severity of patients ranged between 0.1 and 45 (mild to severe AD) based on the SCORAD system. As the SCORAD score increased, the level of vitamin C in the plasma, but not in the epidermis, decreased, and levels of total Cer and Cer2, the major Cer species in the epidermis, also decreased. There was also a positive association between level of vitamin C in the plasma and level of total Cer in the epidermis. However, levels of epidermal total lipids including triglyceride, cholesterol, and free fatty acid (FFA) were not associated with either SCORAD score or level of vitamin C in the plasma of all subjects. CONCLUSIONS: As the clinical severity of AD increased, level of vitamin C in the plasma and level of epidermal Cer decreased, and there was a positive association between these two parameters, implying associations among plasma vitamin C, epidermal Cer, and the clinical severity of AD.

Anti-inflammatory Effect of Baekho-tang Extract through Endocannabinoid system (ECS) Control in Atopic Dermatitis (아토피피부염에서 Endocannabinoid system (ECS) 조절을 통한 백호탕 추출물의 염증 완화 효과)

  • Ahn Sang Hyun;Kim Ki Bong;Jeong Aram
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.37 no.4
    • /
    • pp.53-62
    • /
    • 2023
  • Objectives The aim of this study was to identify the effect of Baekho-tang extract on epidermal barrier recovery and inflammation relief in atopic dermatitis-induced mice through Endocanabinoid system (ECS) regulation. Methods In this study, we used 4-week-old NC/Nga mice were divided into 4 group: lipid barrier elimination group (LBEG), palmitoylethanolamide treated group after lipid barrier elimination (PEAT), Baekho-tang extract treatment group after lipid barrier elimination (BHTT) and control group (Ctrl). Each group was assigned 10 animals. We identified that cannabinoid receptor (CB) 1, CB2, CD (Cluster of Differentiation) 68, inducible nitric oxide synthase (iNOS), substance P and Matrix metallopeptidase 9 (MMP-9) through our immunohistochemistry. Results We discovered that when compared to PEAT, 8-hydroxydeoxyguanosine, a marker of oxidative stress in the epidermal barrier, and CB1 and CB2, markers of ECS modulation, were less activated in BHTT. These results led to an anti-inflammatory response in BHTT, with a significant decrease in several inflammatory mediators such as CD 68, iNOS, substance P and MMP-9 compared to PEAT and LBEG. Conclusions These results suggest that the Baekho-tang extract can reduce the inflammation of atopic dermatitis by restoring the structural damage of the skin lipid barrier through ECS modulation.