• Title/Summary/Keyword: enzyme inhibitors

Search Result 506, Processing Time 0.03 seconds

Enzyme Kinetics of Multiple Inhibition in the Presence of Two Reversible Inhibitors

  • Han, Moon H.;Seong, Baik L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.3
    • /
    • pp.122-129
    • /
    • 1982
  • In order to extend our understanding on the multiple inhibition enzyme kinetics, a general equation of an enzyme reaction in the presence of two different reversible inhibitors was derived by what we call "match-box mechanism" under the combined assumption of steady-state and quasi-equilibrium for inhibitor binding. Graphical methods were proposed to analyze the multiple inhibition of an enzyme by any given sets of different inhibitors, i.e., competitive, noncompetitive, and uncompetitive inhibitors. This method not only gives an interaction factor $({\alpha})$ between two inhibitors, but also discerns ${\alpha}_1$ and ${\alpha}_2$ with and without substrate binding, respectively. The factors involved in the dissociation constants of inhibitors can also be evaluated by the present plot. It is also shown that the present kinetic approach can be extended to other forms of activators or hydrogen ions with some modification.

Docking Study of Human Galactokinase Inhibitors

  • Babu, Sathya
    • Journal of Integrative Natural Science
    • /
    • v.8 no.4
    • /
    • pp.267-272
    • /
    • 2015
  • Galactosemia is a potentially lethal disorder caused by the deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) within the Leloir pathway. Galactokinase (GALK) is the enzyme in Leloir pathway which converts ${\alpha}$-D galactose to galactose 1-phosphate. The elevated level of galactose-1-phosphate, the product of GALK plays a major role in Galactosemia. Therefore the inhibition of GALK is a novel therapy for this disorder. Hence in the present study, we performed molecular docking of twenty inhibitors with different activity against galactokinase into the active site of galactokinase enzyme. The binding mode of these inhibitors was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as SER141, TYR109, ARG105, ARG228, TYR106, GLY346, GLY136, ASP86, ASP186 and SER142 found to interact with inhibitors.

Degradation of immunoglobulins, protease inhibitors and interleukin-1 by a secretory proteinase of Acanthamoeba cutellanii

  • Na, Byong-Kuk;Cho, Jung-Hwa;Song, Chul-Yong;Kim, Tong-So
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • The effect of a secretory proteinase from the pathogenic amoebae Acanthamoeba castellanii on host's defense-oriented or regulatory proteins such as immunoglobulins, interleukin-1, and protease inhibitors was investigated. The enzyme was found to degrade secretory immunoglobulin A (slgA), IgG, and IgM. It also degraded $interleukin-1{\alpha}$ ($IL-l{\alpha}$) and $IL-l{\beta}$. Its activity was not inhibited by endogenous protease inhibitors, such as ${\alpha}$2-macroglobulin, ${\alpha}l-trypsin$ inhibitor, and ${\alpha}2-antiplasmin$. Furthermore, the enzyme rapidly degraded those endogenous protease inhibitors as well. The degradation of host's defense-oriented or regulatory proteins by the Acanthanoeba proteinase suggested that the enzyme might be an important virulence factor in the pathogenesis of Acanthamoeba infection.

Targeting Acetate Kinase: Inhibitors as Potential Bacteriostatics

  • Asgari, Saeme;Shariati, Parvin;Ebrahim-Habibi, Azadeh
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1544-1553
    • /
    • 2013
  • Despite the importance of acetate kinase in the metabolism of bacteria, limited structural studies have been carried out on this enzyme. In this study, a three-dimensional structure of the Escherichia coli acetate kinase was constructed by use of molecular modeling methods. In the next stage, by considering the structure of the catalytic intermediate, trifluoroethanol (TFE) and trifluoroethyl butyrate were proposed as potential inhibitors of the enzyme. The putative binding mode of these compounds was studied with the use of a docking program, which revealed that they can fit well into the enzyme. To study the role of these potential enzyme inhibitors in the metabolic pathway of E. coli, their effects on the growth of this bacterium were studied. The results showed that growth was considerably reduced in the presence of these inhibitors. Changes in the profile of the metabolic products were studied by proton nuclear magnetic resonance spectroscopy. Remarkable changes were observed in the quantity of acetate, but other products were less altered. In this study, inhibition of growth by the two inhibitors as reflected by a change in the metabolism of E. coli suggests the potential use of these compounds (particularly TFE) as bacteriostatic agents.

Preliminary Characterization of Keratinolytic Enzyme of Aspergillus flavus K-03 and Its Potential in Biodegradation of Keratin Wastes

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.31 no.4
    • /
    • pp.209-213
    • /
    • 2003
  • Aspergillus flavus K-03 isolated from poultry forming soil in Korea was studied for its ability to produce extracellular proteases on basal medium containing 2%(w/v) chicken feathers. The fungus was observed to be a potent producer of such enzymes. Keratinolytic enzyme secretion was the best at 15 days of incubation period at pH 9 and temperature $40^{\circ}C$. No relationship existed between the enzyme yield and increase of biomass. Enzyme production was suppressed by exogenous sugars in descending order arabinose>maltose>mannose>fructose. But glucose did not influence the enzyme activity. The keratinolytic enzyme released by the fungus demonstrated the ability to decompose keratin substrates as chicken feather when exogenous glucose was present. The keratinolytic activity was inhibited by $HgCl_2$ and serine-protease inhibitors such as phenymethylsulfonyl fluoride(100%), chymostain(88%), crystalline soybean trypsin inhibtor(80%), antipain(45%) and aprotinin(40%), and was not by cystein-protease and aspartyl-protease inhibitors. The enzyme activity is only partially inhibited by metallo-protease inhibitor. Thus, the enzyme secreted by A. flavus K-03 belongs to the alkaline serine-type protease.

Isolation of Angiotensin Converting enzyme inhibitors from Ripe Cucurbita moschata Duch

  • Hyeyoung Jung;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.244-246
    • /
    • 2001
  • Angiotensin converting enzyme (ACE) inhibitor acts on the inhibition of ACE and causes a decrease in blood pressure. There have been several reports on screening of ACE inhibitors from natural food products and protein hydrolysates of various food sources. Ripe Cucurbita moschata Duch has been used as an oriental medicine in Korea. To isolate ACE inhibitors, crude water extracts of the edible portion of ripe Cucurbita moschata Duch were obtained after heating in water at 95$^{\circ}C$ for 2 h. Crude extracts were then filtered using PM-10 and YM-1 membranes. The membrane-filtered solution was loaded onto Sephadex G-15 column equlibrated with a phosphate buffer. Among the four major fractions of gel permeation chromatography, the second fraction had the highest inhibitory activity of 65%. Further purification of the fraction using reversed-phase HPLC with a $C_{18}$ column produced ACE inhibitors, which were identified as a mixture having molecular mass of 222 and 273 by Tandem mass spectrometry.

  • PDF

3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE)Inhibitors: a Molecular Design in Hypertensive Agents

  • San Juan, Amor A.;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.952-958
    • /
    • 2005
  • Angiotensin-converting enzyme (ACE) is known to be primarily responsible for hypertension. Threedimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of 28 ACE inhibitors. The availability of ACE crystal structure (1UZF) provided the plausible biological orientation of inhibitors to ACE active site (C-domain). Alignment for CoMFA obtained by docking ligands to 1UZF protein using FlexX program showed better statistical model as compared to superposition of corresponding atoms. The statistical parameters indicate reasonable models for both CoMFA ($q^2$ = 0.530, $r^2$ = 0.998) and CoMSIA ($q^2$ = 0.518, $r^2$ = 0.990). The 3D-QSAR analyses provide valuable information for the design of ACE inhibitors with potent activity towards C-domain of ACE. The group substitutions involving the phenyl ring and carbon chain at the propionyl and sulfonyl moieties of captopril are essential for better activity against ACE.

Partial characterization of a 29kDa cysteine protease purified from Taenia solium metacestodes

  • KIM Ji-Young;YANG Hyun-Jong;KIM Kwang-Sig;CHUNG Young-Bae
    • Parasites, Hosts and Diseases
    • /
    • v.43 no.4 s.136
    • /
    • pp.157-160
    • /
    • 2005
  • A 29kDa cysteine protease of Taenia solium metacestodes was purified by Mono Q anion-exchanger and Superose 6 HR gel filtration chromatography. The enzyme was effectively inhibited by cysteine protease inhibitors, such as iodoacetic acid (IAA) and trans-epoxy-succinyl-L-leucyl-amido (4-guanidino) butane (E-64) while inhibitors acting on serine- or metallo-proteases did not affect the enzyme activity. The purified enzyme degraded human immunoglobulin G (IgG), collagen and bovine serum albumin (BSA), but human IgG was more susceptible for proteolysis by the enzyme. To define the precise biological roles of the enzyme, more detailed biochemical and functional studies would be required.

$\beta$ -Lactam Derivatives as Inhibitors for Carboxypeptidase A. Enzyme Inhibitor Design, Part 17

  • Kim, Dong H.;Kim, Gwang Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.34-38
    • /
    • 1996
  • 2-(Azetidin-2-one-1-yl)-3-phenylpropionic acid and 2-(azetidin-2-thione-1-yl)-3-phenylpropionic acid were designed as potential active site directed inactivators for carboxypeptidase A, but shown to be they are competitive reversible inhibitors for the enzyme. The observation was somewhat surprising, but is not unexpected considering the recent report of Page who questioned the validity of the generally believed notion that $\beta-lactam$ ring is highly unstable.

Computer-based screening for novel inhibitors of human topoisomerase I with FlexiDock docking protocol

  • Choi, In-Hee;Kim, Choon-Mi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.315.1-315.1
    • /
    • 2002
  • DNA topoisomerases I (topo I) and II are essential enzymes that relax DNA supercoiling and relieve torsional strain during DNA processing. including replication. transcription. and repair. Topo I relaxes DNA by cleaving one strand of DNA by attacking a backbone phosphale with a catalytic lyrosine (Tyr723. human topo I). This enzyme has recently been investigated as a new target for antineoplastic drugs. Inhibitors to the enzyme intercalate between the DNA base pairs. interfering religation of cleaved DNA, therefore inhibit the activity of topo I. (omitted)

  • PDF