DOI QR코드

DOI QR Code

Preliminary Characterization of Keratinolytic Enzyme of Aspergillus flavus K-03 and Its Potential in Biodegradation of Keratin Wastes

  • Published : 2003.12.31

Abstract

Aspergillus flavus K-03 isolated from poultry forming soil in Korea was studied for its ability to produce extracellular proteases on basal medium containing 2%(w/v) chicken feathers. The fungus was observed to be a potent producer of such enzymes. Keratinolytic enzyme secretion was the best at 15 days of incubation period at pH 9 and temperature $40^{\circ}C$. No relationship existed between the enzyme yield and increase of biomass. Enzyme production was suppressed by exogenous sugars in descending order arabinose>maltose>mannose>fructose. But glucose did not influence the enzyme activity. The keratinolytic enzyme released by the fungus demonstrated the ability to decompose keratin substrates as chicken feather when exogenous glucose was present. The keratinolytic activity was inhibited by $HgCl_2$ and serine-protease inhibitors such as phenymethylsulfonyl fluoride(100%), chymostain(88%), crystalline soybean trypsin inhibtor(80%), antipain(45%) and aprotinin(40%), and was not by cystein-protease and aspartyl-protease inhibitors. The enzyme activity is only partially inhibited by metallo-protease inhibitor. Thus, the enzyme secreted by A. flavus K-03 belongs to the alkaline serine-type protease.

Keywords

References

  1. Baker, D. H., Blitenthal, R. C., Bobel, K. P., Czrnecki, G. L., Southern, L. L. and Willis, G. M. 1981. Protein amino acid evaluation of steam processed feather meal. Poultry Sci. 60: 1865-1872 https://doi.org/10.3382/ps.0601865
  2. Beynon, R. J. and Bond, J. S. 1990. Proteolytic enzymes: a practical approach. IRL Press, Oxford. England
  3. Bhargava, K. and O'Neil, J. 1975. Composition and utilization of poultry by-product and hydrolyzed feather meal in broiled diets. Poultry Sci. 54: 1511-1518
  4. Bockle, B., Galunsky, B. and Muller, R. 1995. Characterization of a keratinolytic serine proteinase from Streptomyces puctum DSM 40530. Appl. Environ. Microbiol. 61: 3705-3710
  5. Bradford. M. M. 1976. A rapid and sensitive method for the quntitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Bressolier, P., Letourneau, F., Urdaci, M. and Nerneuil, B. 1999. Purification and characterization of keratinolytic serine proteinases from Streptomyces albidoflavus. Appl. Environ. Microbiol. 65: 2570-2576
  7. Chandra, A. K. and Banerjee, A. B. 1972: Oxidation of specifically labeled glucose by Trichophyton rubrum. Acta Microbiol. Polinica 4: 197-200
  8. Dozie, I. N. S., Okeke, C N. and Unaeze, N. C. 1994. A thermostable, alkaline active, keratinolytic proteinase from Chrysosporium keratinophilum. World. J. Microbiol. Biotechnol. 10: 563-567 https://doi.org/10.1007/BF00367668
  9. El-naghy, M. A., El-katany, E., Fedl-allah, E. M. and Nazeer, W. W. 1998. Degradation of chicken feathers by Chrysosporum georgiae. Mycopathologia 143: 77-84 https://doi.org/10.1023/A:1006953910743
  10. Friedrich, A. B. and Antranikian, G. 1996. Keratin degradation by Fervidobacteriuum pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875-2882
  11. Galas, E. and Kaluzewska, M. T. 1989. Proteinases of Streptomyces fradiae. I. Preliminary characterization and purification. Acta Microbiol. Pol. 38: 247-258
  12. Gradisar, H., Kern, S. and Friedrich, J. 2000. Keratinase of Doratimyces microsporus. Appl. Microbiol. Biotechnol. 53: 196-200 https://doi.org/10.1007/s002530050008
  13. Grzywnowicz, G., Lobarzewski, J., Wawrzkiewicz, K. and Wolski, T. 1989. Comparative characterization of proteolytic enzymes from Trichophyton gallinae and Trichophyton verrucosum. J. Med. Vet. Mycol. 27: 319-328 https://doi.org/10.1080/02681218980000431
  14. Ignatova, Z., Gousterva, A., Spassov, G. and Nedkov, P. 1999. Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol. 45: 217-222 https://doi.org/10.1139/cjm-45-3-217
  15. Kim, J.-D. 2003. Keratinolytic activity of five Aspergillus species isolated from poultry farm soil in Korea. Mvcobiology 31: 157-161
  16. Kuntiz, M. 1947. Crystaline soybean trpsin inhibitor II. General properties. J. Gen. Physiol. 30: 291-310
  17. Letourneau, F., Soussotte, V., Bressollier, P., Branland, P. and Nerneuil, B. 1998. Keratinolytic activity of Streptomyces sp. $SK_{1-02}$: a new isolated strain. Lett. Appl. Microbiol. 26: 77-80
  18. Malviya, H. K., Rajak, R. C. and Hasija, S. K. 1992. Purification and partial characterization of two extracellular keratinases of Scopulariopsis brevicaulis. Mycopathologia 119: 161-165 https://doi.org/10.1007/BF00448814
  19. McGarrol, D. R. and Thore, E. 1985. Pectolytic, cellulolytic and proteolytic activities expressed by cultures of Endothia parastica and initiation of these activities by components extracted from Chinese and American chestnut bark. Physiol. Plant Pathol. 26: 326-378
  20. Meevootisom, V. and Niederpruem, D. J. 1979: Control of exocellular protease in dermatophytes and especially Trichophyton rubrum. Sabourudia 17: 91-106
  21. Mitsuiki, S., Sakai, M., Moriyama, Y., Goto, M. and Furukawa, K. 2002. Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nacardiopsis sp. TOA-1. Biosci. Biochenol. Biochem. 66: 164-167
  22. Muller, A. and Saenger, W. 1993. Studies on the inhibitory action of mercury upon proteinase K. J. BioI. Chem. 268: 26150-26154
  23. Onifade, A. A., Al-Sane, N. A., Al-Musalam, A. A. and AIZarban, S. 1998. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins s livestock feed resources. Biores. Technol. 66: 1-11 https://doi.org/10.1016/S0960-8524(98)00033-9
  24. Oyeka, C. A. and Gugnani, H. C. 1997. Keratin degradation by Scytalidium species and Fusarium solani. Mycoses 41: 73-76
  25. Santos, R. M. D. B., Firmino, A. A. P., de Sa, C. M. and Felix, C. R. 1996. Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr. Microbiol. 33: 364-370 https://doi.org/10.1007/s002849900129
  26. Singh, C. J. 1997. Characterization of an extracellular keratinase of Trichophyton simii and its role in keratin degradation. Mycopatholgia 137: 13-16 https://doi.org/10.1023/A:1006844201399
  27. Singh, C. J. 1999. Exocellular proteases of Malbranchea gypsea and their role in keratin deterioration. Mycopathologia 143: 147-150
  28. Singh, C. J. and Singh, B. G. 1995. Characterization of extracellular proteolytic enzyme of Chrysosporium tropicum CF 34 and its role in keratin degradation Ind. J. Microbiol. 35: 311-314
  29. Somkuti, G. A. and Babel, F. J. 1967. Conditions influencing the synthesis of acid protease by Mucor putillus Lindt. Appl. Microbiol. 15: 1309-1312
  30. Wawrzkiewicz, K., Wolski, T. and Lobarzewski, J. 1991. Screening the keratinolytic activity of dermatophytes in vitro. Mycopathologia 114: 1-8 https://doi.org/10.1007/BF00436684
  31. Yu, R. J., Harman, S. R. and Blank, F. 1969. Hair digestion of Trichophyton mentagrophytes. J. Invest. Dermatol. 53: 166-171

Cited by

  1. K-03 for Degradation of Feather Keratin vol.33, pp.2, 2005, https://doi.org/10.4489/MYCO.2005.33.2.121
  2. Biological Pretreatment of Chicken Feather and Biogas Production from Total Broth vol.180, pp.7, 2016, https://doi.org/10.1007/s12010-016-2175-8