• Title/Summary/Keyword: enzymatic and acid hydrolysis

Search Result 243, Processing Time 0.025 seconds

Optimization of organosolv pretreatment with sulfuric acid for enhancing enzymatic hydrolysis of Pitch Pine (Pinus rigida)

  • Park, Na-Hyun;Kim, Hye-Yun;Gwak, Ki-Seob;Koo, Bon-Wook;Yeo, Hwan-Myeong;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.505-505
    • /
    • 2009
  • The object is to optimize the best condition of organosolv pretreatment process with sulfuric acid as a catalyst. As a material, Pitch pine (Pinus rigida) was ground and sieved through 40-mesh screen, and Celluclast and $\beta$-glucosidase were used as enzymes for enzymatic hydrolysis. Pretreatment processes were carried out in the minibomb, and 20 g of materials with 200 ml of 50% ethanol solution (v/v) with 1% sulfuric acid as a catalyst. Pretreatment temperature was varied from $150^{\circ}C$ to $190^{\circ}C$, and time was varied from 0 to 20 min. Then, residual materials were used for enzymatic hydrolysis. The best conditions were selected by estimating followed enzymatic hydrolysis rate and degradable rates after pretreatment process. The highest value of enzymatic hydrolysis rate was obtained as 55 - 60% at 160 and at $180^{\circ}C$, but the value decreased under more severe conditions. As the residual rates decreased under severe conditions, it infered that the decrease of sugar contents limits enzymatic hydrolysis rates. Combined with enzymatic hydrolysis rate, degradable rates and H-factors, the temperatures at $160^{\circ}C$ for 20 min and at $180^{\circ}C$ for 0 min were concluded as the optimized conditions where have the lowest H-factor value for considering energy input.

  • PDF

Evaluation of Secondary Acid and Enzymatic Hydrolysis of Hemicellulose in Hot Water Pre-Pulping Extract of Mixed Hardwoods

  • Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • Pre-pulping extracts were found to contain a dilute amount of xylo-oligosaccharides and acetic acid as the major components, and many minor components including other organic acids, lignin-derived phenolics, and sugar degradation products. Once separated from the pulp, a secondary hydrolysis step was required to hydrolyze oligomeric hemicellulose sugars into monomeric sugars before fermentation. The following study detailed the extent of hemicellulose recovery by pre-pulping using hot water extraction and characterized the hydrolysis of the extract with respect to comparing acid and enzymatic hydrolysis. The secondaryhydrolysis of hot water extracts made at an H-Factor of 800 was tested for a variety of acid and enzyme loading levels using the sulfuric acid and xylanases. The maximum fermentable sugar yield from acid and enzyme hydrolysis of the extract was 18.7 g/${\ell}$ and 17.7 g/${\ell}$ representing 84.6% and 80.1% of the maximum possible yield, respectively.

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Characteristics of Enzymatic Hydrolysis of Sodium Hydroxide pretreated Suwon Poplar (NaOH 전처리된 현사시나무의 효소가수분해 특성)

  • 박영기;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • An effective method for production of glucose was developed using enzymatic hydrolysis of Suwon poplar by the cellulase. Enzymatic hydrolysis of wood is the reaction to produce glucose from wood using enzyme which derives from microorganism. Glucose can be transferred easily to ethanol by fermentation. Ethanol is the starting material for producing acetone, butanol, citric acid and lactic acid. The mechanism of the enzymatic hydrolysis of cellulose are reasonably explained in terms of the sequential action of three different types of enzymes, endo-cellulase, ex-cellulase, and $\beta$ -glucosidase. The goal of this work was to investigate the cellulose hydrolysis pretreated polar with various concentration NaOH, the crystallinity of cellulose, lignin contents and the degree of hydrolysis.

  • PDF

The Effect of Acid Hydrolysis and Enzymatic Saccharification in Bioethanol Production Process Using Fruit Peels (과일껍질을 이용한 바이오에탄올 생산 공정에서 산 가수분해 및 효소당화의 영향)

  • Lee, Seung Bum;Kim, Hyungjin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.619-623
    • /
    • 2014
  • The acid hydrolysis and enzymatic saccharification were carried out for the production of cellulosic ethanol. The possibility of bio-energy production from tangerine peel and apple and watermelon rind was evaluated by determining the optimum production condition. The optimum conditions for the production of cellulosic ethanol from fruit peel were as follows: the sulfuric acid concentration and reaction time of acid hydrolysis for the ethanol production from an apple rind were 20 wt% and 90 min, respectively. The concentration of sulfuric acid for tangerine peel and a watermelon rind at the hydrolysis time of 60 min were 15 wt% and 10 wt%, respectively. A viscozyme was proven as the best conversion for the ethanol production when using enzymatic saccharification from fruit peels. The optimum enzymatic saccharification time for tangerine peel and apple and watermelon rind were 60, 180, and 120 min, respectively.

Process Development for the Enzymatic Hydrolysis of Food Protein: Effects of Pre-treatment and Post-treatments on Degree of Hydrolysis and Other Product Characteristics

  • Chae, Hee-Jeong;In, Man-Jin;Kim, Min-Hong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • An enzymatic process was developed to produce protein hydrolysater form defatted soya protein. Various unit operations were tried, and the effects of pre- and post-treatments on the product characteristics such as degree of hydroylsis (DH), free amino acid content (%FAA) and average molecular weight (MW) were investigated. The use of acid washes showed no difference in %DH. Increasing pH during pre-cooking gave lower %DH. Alkaline cooking made too much insoluble protein, thus the protein yield was too small. A better hydrolysis with more acceptable taste was obtained when the combination of Neutrase/Alcalase/Flavourzyme was used in place of Alcalase/Flavourzyme combination; Untoasted defatted soya was more effective on the proteolysis than toasted one. The MW of the evaporated and spray dried product was higher than that of undried product, due to precipitation of low-solubility components. When ultrafiltration and the product concentration carried out the product separation by reverse osmosis, the solubility and the taste of the product were improved. The difference between enzyme hydrolysate and acid hydrolysate was significant in free amino acid composition, especially in tyrosine, phenylalanine, glutamine and asparagine.

  • PDF

Pretreatment of Wastepaper using Aqueous Glycerol to enhance Enzymatic Hydrolysis (효소 가수분해 향상을 위해 glycerol 수용액을 사용한 폐지의 전처리)

  • Seo, Dong Il;Kim, Chang-Joon;Kim, Sung Bae
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Pretreatment of wastepaper using aqueous glycerol was investigated to enhance the enzymatic hydrolysis. The effects of four factors (solid/liquid ratio, glycerol concentration, acid concentration, and reaction time) on the dissolution yield, the removal of cellulose, hemicellulose and lignin, and the enzymatic digestibility were examined at $150^{\circ}C$. The 1/8 of solid/liquid was determined to perform the reaction uniformly, and the 93% of glycerol concentration was found to be a minimum concentration to conduct the reaction under atmospheric pressure. Also, it was found that the acid concentration and reaction time were strongly related to the dissolution yield and the removal of cellulose, hemicellulose and lignin, but moderately to the enzymatic digestibility. At an optimum condition of $150^{\circ}C$, 1 h and 1% acid concentration, 56% and 49% of hemicellulose and lignin, respectively, were removed, while only 4% of cellulose was removed. The enzymatic digestibility at this condition was 86%, meaning that 83% of the glucan present in the initial substrate was converted to glucose. Compared to glycerol with ethylene glycol as a pretreatment solvent, glycerol is much cheaper than ethylene glycol, but ethylene glycol is superior to glycerol in delignification.

Evaluation of 2,3-Butanediol Production from Red Seaweed Gelidium amansii Hydrolysates Using Engineered Saccharomyces cerevisiae

  • Ra, Chae Hun;Seo, Jin-Ho;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1912-1918
    • /
    • 2020
  • Hyper-thermal (HT) acid hydrolysis of red seaweed Gelidium amansii was performed using 12% (w/v) slurry and an acid mix concentration of 180 mM at 150℃ for 10 min. Enzymatic saccharification when using a combination of Celluclast 1.5 L and CTec2 at a dose of 16 U/ml led to the production of 12.0 g/l of reducing sugar with an efficiency of enzymatic saccharification of 13.2%. After the enzymatic saccharification, 2,3-butanediol (2,3-BD) fermentation was carried out using an engineered S. cerevisiae strain. The use of HT acid-hydrolyzed medium with 1.9 g/l of 5-hydroxymethylfurfural showed a reduction in the lag time from 48 to 24 h. The 2,3-BD concentration and yield coefficient at 72 h were 14.8 g/l and 0.30, respectively. Therefore, HT acid hydrolysis and the use of the engineered S. cerevisiae strain can enhance the overall 2,3-BD yields from G. amansii seaweed.

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

Pure-Separation of Calcium chloride-treated Silk Fibroin Hydrolysate by Gel Filtration Chromatography and Effect of It's Enzymatic Hydrolysis (Calcium chloride 피브로인 용해물의 Gel Filtration Chromatography에 의한 순수분리 및 효소 가수분해 효과)

  • 여주홍;이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.3
    • /
    • pp.211-215
    • /
    • 1999
  • The pure-separation of calcium chloride-treated fibroin hydrolysates could be carried out using gel filtration chromatography. Also, the effect of its enzymatic hydrolysis was investigated in order to find out the enhancement of their functionality. The average molecular weight(Mw), solubility and free amino acid compositions of three hydrolysates samples (calcium chloride, calcium chloride-flavourzyme and calcium chloride-thermoase)were measured to compare their characteristics. The molecular weight of calcium chloride hydrolysate was about Mw 46,800 and it can be reduced to Mw 12,500 and 1,070 upon the enzymatic hydrolysis by flavourzyme and thermoase, repectively. A solubility of calcium chloride-treated samples shows about 60% while calcium chloride/enzyme-treated samples are perfectly soluble (100% solubility). The total amino acid composition of calcium chloride enzymatic hydrolysates are much higher than that of calcium chloride hydrolysate.

  • PDF