• 제목/요약/키워드: environmentally benign

Search Result 93, Processing Time 0.023 seconds

Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [EMIM][EtSO4] Ionic Liquid Using Ultrasonic Irradiation

  • Behboudnia, M.;Habibi-Yangjeh, A.;Jafari-Tarzanag, Y.;Khodayari, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.53-56
    • /
    • 2009
  • At room-temperature, a facile, seedless, and environmentally benign green route for the synthesis of star like PbS nanoclusters at 7 min in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM] [$EtSO_{4}$], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction studies display that the products are excellently crystallized in the form of cubic structure. An energy dispersive X-ray spectroscopy (EDX) investigation reveals the products are extremely pure. The absorption spectra of the product exhibit band gap energy of about 4.27 eV which shows an enormous blue shift of 3.86 eV that can be attributed to very small size of PbS nanoparticles produced and quantum confinement effect. A possible formation mechanism of the PbS nanoparticles using ultrasonic irradiation in aqueous solution of the RTIL is presented.

A Novel Route to New Bis(benzopyrano) Fused Dihydropyridines Using Dry Media

  • Kidwai, Mazaahir;Rastogi, Shweta;Mohan, Richa
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.119-121
    • /
    • 2004
  • A new and efficient synthesis of the novel bioactive bis(benzopyrano) fused dihydropyridines is described. The conventionally developed route is a two step multicomponent condensation reaction. This is latter modified by a one pot microwave (MW) assisted reaction using inorganic solid support via the arylidene derivative intermediate. With this environmentally benign approach, the reaction time is brought down from hours to minutes along with a yield enhancement. Furthermore, the role of different solid supports is studied and it is concluded that the acidic alumina is the best solid support for the present investigation.

Inhibition of Fusarium oxysporum f. sp. nicotianae Growth by Phenylpropanoid Pathway Intermediates

  • Shull, Timothy E.;Kurepa, Jasmina;Miller, Robert D.;Martinez-Ochoa, Natalia;Smalle, Jan A.
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.637-642
    • /
    • 2020
  • Fusarium wilt in tobacco caused by the fungus Fusarium oxysporum f. sp. nicotianae is a disease-management challenge worldwide, as there are few effective and environmentally benign chemical agents for its control. This challenge results in substantial losses in both the quality and yield of tobacco products. Based on an in vitro analysis of the effects of different phenylpropanoid intermediates, we found that the early intermediates trans-cinnamic acid and para-coumaric acid effectively inhibit the mycelial growth of F. oxysporum f. sp. nicotianae strain FW316F, whereas the downstream intermediates quercetin and caffeic acid exhibit no fungicidal properties. Therefore, our in vitro screen suggests that trans-cinnamic acid and para-coumaric acid are promising chemical agents and natural lead compounds for the suppression of F. oxysporum f. sp. nicotianae growth.

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials (배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발)

  • Kim, Hyunah;Kang, Kisuk
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.416-426
    • /
    • 2018
  • Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

Agronomic Effect of High Quality Compost mixed with Brown Seaweed for Environmentally Benign Organic Farming (해초 혼합 기능성 희비의 작물재배 효과)

  • 손상목
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.2
    • /
    • pp.95-109
    • /
    • 2002
  • This study focussed to find out the agronomic effect of high quality compost mixed with brown seaweed and to determine the optimum mixing rate of seaweed to compost for environmentally benign organic farming. The experiment was conducted in lysimeters at Experimental Farm of Dankook University with Chinese Cabbage(Bulam #1), and the crop growth such length and width of leaf, biomass of Chinese Cabbage were checked, the content of chlorophyll, sugar, vitamin C, nitrate in outer leaf and idler leaf was determined. It was observed that nitrate content was dramatically decreased in the plot of mixture with seaweed, while biomass and content of Vitamin C were increased steeply in the plot of mixture with seaweed. The best result was gained the 0.25% mixture of brown seaweed with compost.

  • PDF

Experimental Study on the Synthesis of Dimethyl Ether (디메틸에테르 합성 반응의 실험적 연구)

  • Choi, Chang Woo;Cho, Wonihl;Baek, Young Soon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.125-131
    • /
    • 2006
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, biomass and spent plastic. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. Therefore, it is considered as an excellent substitute fuel for LPG, fuel cells, power plant, and especially diesel and is expected to be the alternative fuel by 2010. The experimental study of the direct synthesis of DME was investigated under various conditions over a temperature range of $220{\sim}280^{\circ}C$, syngas ratio 1.2~3.0. All experiments were carried out with a hybrid catalyst, composed of a methanol synthesis catalyst ($Cu/ZnO/Al_2O_3$) and a dehydration catalyst (${\gamma}-Al_2O_3$). The observed reaction rate follows qualitatively a Langmiur-Hinshellwood model as the reaction mechanism. Such a mechanism is considered with three reactions; methanol synthesis, methanol dehydration and water gas shift reaction. From a surface reaction with dissociative adsorption of hydrogen, methanol, and water, individual reaction rate was determined.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

Optimization of KOGAS DME Process From Demonstration Long-Term Test (KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발)

  • Chung, Jongtae;Cho, Wonjun;Baek, Youngsoon;Lee, Changha
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

A Facile Greener Assisted Protocol for the Synthesis of Some New 4-aryl-(5-chloro-3-Methyl-1-phenyl-1H-Pyrazol-4-yl)-4,5-dihydroisoxazol-3-yl) Derivatives and their in vitro Antimicrobial Activity

  • Shaikh, Baseer M.;Konda, Shankaraiah G.;Yemul, Omprakash S.;Dawane, Bhaskar S.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.246-250
    • /
    • 2012
  • An efficient access, single step and environmentally benign synthesis of a new series of pyrazole containing isoxazolines derivatives were prepared by the condensation of chalcones bearing pyrazole moiety with hydroxyl amine hydrochloride in basic condition by using polyethylene glycol-400 (PEG) as a greener reaction solvent. The advantages of the present methodology are mild reaction condition and avoidance of volatile organic solvent. Furthermore, these newly synthesized compounds were screened for their antimicrobial activity against various pathogens like Escherichia coli (MTCC 2939), Salmonella typhi (MTCC 98), Staphylococcus aureus (MTCC 96), Bacillus subtilis (MTCC 441), Aspergillus niger (MTCC 281), Aspergillus flavus (MTCC 2501), Penicillium chrsogenum (MTCC 160) and Fusarium moniliformae (MTCC 156). Especially compound containing the hydroxyl group in C2-position and presence of halo (I, Br and Cl) groups as substituents at $C_3$ and $C_5$ position on the benzene nucleus showed the higher activity. Furthermore, compounds bearing methyl groups in combination with I and Br which enhanced the activity.

Synthesis, Characterization and Correlation Analysis in Styryl 6-Methoxy-2-Naphthyl Ketones (Styryl-6-Methoxy-2-Naphthyl Ketone 유도체의 합성 및 특성 분석)

  • Thirunarayanan, G.
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.115-124
    • /
    • 2007
  • A series of α, β-unsaturated ketones are synthesized by Crossed - Aldol condensation reaction, from ecofriendly 6-methoxy-2-naphthyl ketones and substituted benzaldehydes under solvent free conditions using silica-sulfuric acid as a catalytic reagent. The yields of ketones are more than 90% and the catalyst was reusable for further run. There is no appreciable decrease in the yield of product and the activity of catalyst. These chalcones were characterized by their physical constants and spectral data (IR, 1H-, 13C-NMR and Mass). These spectral data are subjected to correlate various Hammett substituent constants with single and multiparameter correlation equations. From the results of statistical analysis the influence of electronic effects of substituents on the spectral data of the ketones were explained.