References
- Avenot, H. F. and Michailides, T. J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot. 29:643-651. https://doi.org/10.1016/j.cropro.2010.02.019
- Bock, C. H., Shapiro-Ilan, D. I., Wedge, D. E. and Cantrell, C. L. 2014. Identification of the antifungal compound, transcinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab. J. Pest Sci. 87:155-162. https://doi.org/10.1007/s10340-013-0519-5
- Bubici, G., Kaushal, M., Prigigallo, M. I., Gomez-Lama Cabanas, C. and Mercado-Blanco, J. 2019. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10:616. https://doi.org/10.3389/fmicb.2019.00616
- Daoubi, M., Hernandez-Galan, R., Benharref, A. and Collado, I. G. 2005. Screening study of lead compounds for natural product-based fungicides:antifungal activity and biotransformation of 6α,7α-dihydroxy-β-himachalene by Botrytis cinerea. J. Agric. Food Chem. 53:6673-6677. https://doi.org/10.1021/jf050697d
- Duniway, J. M. 2002. Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337-1343. https://doi.org/10.1094/PHYTO.2002.92.12.1337
- Fisher, C., Pearce, B. and Kinney, J. 2018. Chloropicrin fumigation to control fusarium wilt of burley tobacco in Kentucky. URL https://www.coresta.org/sites/default/files/abstracts/2018_TWC48_Fisher.pdf. [14 October 2020].
- Gordon, T. R. 2017. Fusarium oxysporum and the fusarium wilt syndrome. Annu. Rev. Phytopathol. 55:23-39. https://doi.org/10.1146/annurev-phyto-080615-095919
- Guzman, J. D. 2014. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules 19:19292-19349. https://doi.org/10.3390/molecules191219292
- Hao, W.-Y., Ren, L.-X., Ran, W. and Shen, Q.-R. 2010. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum. Plant Soil 336:485-497. https://doi.org/10.1007/s11104-010-0505-0
- Hazir, S., Shapiro-Ilan, D. I., Bock, C. H. and Leite, L. G. 2017. Trans-cinnamic acid and Xenorhabdus szentirmaii metabolites synergize the potency of some commercial fungicides. J. Invertebr. Pathol. 145:1-8. https://doi.org/10.1016/j.jip.2017.03.007
- LaMondia, J. A. 1995. Influence of resistant tobacco and tobacco cyst nematodes on root infection and secondary inoculum of Fusarium oxysporum f. sp. nicotiana. Plant Dis. 79:337-340. https://doi.org/10.1094/PD-79-0337
- LaMondia, J. A. 2015. Fusarium wilt of tobacco. Crop Prot. 73:73-77. https://doi.org/10.1016/j.cropro.2015.03.003
- Leslie, J. F., Summerell, B. A. and Bullck, S. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA. 388 pp.
- Li, D., Luong, T. T. M., Dan, W.-J., Ren, Y., Nien, H. X., Zhang, A.-L. and Gao, J.-M. 2018. Natural products as sources of new fungicides (IV): synthesis and biological evaluation of isobutyrophenone analogs as potential inhibitors of classII fructose-1,6-bisphosphate aldolase. Bioorg. Med. Chem. 26:386-393. https://doi.org/10.1016/j.bmc.2017.10.046
- Lucas, J. A., Hawkins, N. J. and Fraaije, B. A. 2015. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90:29-92. https://doi.org/10.1016/bs.aambs.2014.09.001
- Masiello, M., Somma, S., Ghionna, V., Logrieco, A. F. and Moretti, A. 2019. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins (Basel) 11:11. https://doi.org/10.3390/toxins11010011
- Miller, N. F., Standish, J. R. and Quesada-Ocampo, L. M. 2020. Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and pydiflumetofen in vitro and efficacy for fusarium wilt management in watermelon. Plant Health Prog. 21:13-18. https://doi.org/10.1094/php-08-19-0056-rs
- Morales, J., Mendoza, L. and Cotoras, M. 2017. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea. J. Appl. Microbiol. 123:969-976. https://doi.org/10.1111/jam.13540
- Mota, F. L., Queimada, A. J., Pinho, S. P. and Macedo, E. A. 2008. Aqueous solubility of some natural phenolic compounds. Ind. Eng. Chem. Res. 47:5182-5189. https://doi.org/10.1021/ie071452o
- Musso, L., Dallavalle, S., Farina, G. and Burrone, E. 2012. Natural products as sources of new fungicides: synthesis and antifungal activity of zopfiellin analogues. Chem. Biol. Drug. Des. 79:780-789. https://doi.org/10.1111/j.1747-0285.2012.01343.x
- Neelam, Khatkar, A. and Sharma, K. K. 2020. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr. 60:2655-2675. https://doi.org/10.1080/10408398.2019.1653822
- Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Clement Tsui, K. M., Srinivas, C., Niranjana, S. R. and Chandra, N. S. 2016. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci. Rep. 6:21367. https://doi.org/10.1038/srep21367
- Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T. and Mazzola, M. 2003. United States Department of Agriculture-Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest. Pest Manag. Sci. 59:814-826. https://doi.org/10.1002/ps.728
- Steinkellner, S. and Mammerler, R. 2007. Effect of flavonoids on the development of Fusarium oxysporum f. sp. lycopersici. J. Plant Interact. 2:17-23. https://doi.org/10.1080/17429140701409352
- UNEP Ozone Secretariat. 2020. Handbook for the Montreal protocol on substances that deplete the ozone layer. 14th ed. United Nations Environment Programme, Nairobi, Kenya. 937 pp.
- Vogt, T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3:2-20. https://doi.org/10.1093/mp/ssp106
- Wu, H.-S., Raza, W., Fan, J.-Q., Sun, Y.-G., Bao, W. and Shen Q.-R. 2008. Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f.sp. niveum. J. Agric. Food Chem. 56:1316-1321. https://doi.org/10.1021/jf0726482
- Xie, H., Yan, D., Mao, L., Wang, Q., Li, Y., Ouyang, C., Guo, M. and Cao, A. 2015. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. PLoS ONE 10:e0117980. https://doi.org/10.1371/journal.pone.0117980
- Xu, D., Hu, M.-J., Wang, Y.-Q. and Cui, Y.-L. 2019. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 24:1123. https://doi.org/10.3390/molecules24061123
- Ye, S. F., Yu, J. Q., Peng, Y. H., Zheng, J. H. and Zou, L. Y. 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143-150. https://doi.org/10.1023/B:PLSO.0000047721.78555.dc
- Zhao, Q., Chen, L., Dong, K., Dong, Y. and Xiao, J. 2018. Cinnamic acid inhibited growth of faba bean and promoted the incidence of fusarium wilt. Plants (Basel) 7:84. https://doi.org/10.3390/plants7040084