DOI QR코드

DOI QR Code

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials

배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발

  • Kim, Hyunah (Department of Materials Science and Engineering, Seoul National University) ;
  • Kang, Kisuk (Department of Materials Science and Engineering, Seoul National University)
  • 김현아 (서울대학교 재료공학부) ;
  • 강기석 (서울대학교 재료공학부)
  • Received : 2018.12.17
  • Accepted : 2018.12.21
  • Published : 2018.12.30

Abstract

Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

Keywords

References

  1. M. G. Lee, J. S. Park, H. W. Jang, "Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review." J. Korean Ceram. Soc., 55, 185-202 (2018). https://doi.org/10.4191/kcers.2018.55.3.08
  2. M. Jacobson, W. Colella, D. Golden, "Cleaning the air and improving health with hydrogen fuel-cell vehicles." Science, 308, 1901-1905 (2005). https://doi.org/10.1126/science.1109157
  3. S. Chu, Y. Cui, N. Liu, "The path towards sustainable energy." Nat. Mater., 16, 16 (2017). https://doi.org/10.1038/nmat4834
  4. M. Gratzel, "Photoelectrochemical cells." Nature 414, 338 (2001). https://doi.org/10.1038/35104607
  5. N. S. Lewis, D. G. Nocera, "Powering the planet: Chemical challenges in solar energy utilization." Proc. Natl. Acad. Sci. U. S. A., 103, 15729-15735 (2006). https://doi.org/10.1073/pnas.0603395103
  6. H. Seo, K. H. Cho, H. Ha, S. Park, J. S. Hong, K. Jin, K. T. Nam, "Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition." J. Korean Ceram. Soc., 54, 1-8 (2017). https://doi.org/10.4191/kcers.2017.54.1.12
  7. J. K. Hurst, "In pursuit of water oxidation catalysts for solar fuel production." Science, 328, 315-316 (2010). https://doi.org/10.1126/science.1187721
  8. T. A. Betley, Q. Wu, T. Van Voorhis, D. G. Nocera, Electronic design criteria for O- O bond formation via metal- oxo complexes." Inorg. Chem., 47, 1849-1861 (2008). https://doi.org/10.1021/ic701972n
  9. M. W. Kanan, D. G. Nocera, "In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and $Co^{2+}$." Science, 321, 1072-1075 (2008). https://doi.org/10.1126/science.1162018
  10. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles." Science, 334, 1383-1385 (2011). https://doi.org/10.1126/science.1212858
  11. H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Norskov, T. F. Jaramillo, J. Rossmeisl, "Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis." Phys. Chem. Chem. Phys., 14, 14010-14022 (2012). https://doi.org/10.1039/c2cp40841d
  12. M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, "Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water." J. Am. Chem. Soc., 135, 13521-13530 (2013). https://doi.org/10.1021/ja405997s
  13. H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, K. Kang, "Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst." Nat. Commun., 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
  14. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, "Synthesis and activities of rutile $IrO_2\;and\;RuO_2$ nanoparticles for oxygen evolution in acid and alkaline solutions." J. Phys. Chem. Lett., 3, 399-404 (2012). https://doi.org/10.1021/jz2016507
  15. L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun, "Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium-catalyzed water oxidation." Angew. Chem.,Int. Ed., 50, 445-449 (2011). https://doi.org/10.1002/anie.201005141
  16. L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II." Nat. Chem., 4, 418 (2012). https://doi.org/10.1038/nchem.1301
  17. K. S. Joya, N. K. Subbaiyan, F. D'Souza, H. J. de Groot, "Surface-immobilized single-site iridium complexes for electrocatalytic water splitting." Angew. Chem.,Int. Ed., 51, 9601-9605 (2012). https://doi.org/10.1002/anie.201203560
  18. F. Dionigi, P. Strasser, NiFe-Based (Oxy) hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes." Adv. Energy Mater., 6, 1600621 (2016). https://doi.org/10.1002/aenm.201600621
  19. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, "Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts." Nat. Mater., 11, 550 (2012). https://doi.org/10.1038/nmat3313
  20. J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, "A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency." J. Am. Chem. Soc., 136, 4201-4211 (2014). https://doi.org/10.1021/ja410223j
  21. Z. Lu, H. Wang, D. Kong, K. Yan, P.-C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, "Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction." Nat. Commun., 5, 4345 (2014). https://doi.org/10.1038/ncomms5345
  22. Y. Liu, H. Wang, D. Lin, C. Liu, P.-C. Hsu, W. Liu, W. Chen, Y. Cui, "Electrochemical tuning of olivinetype lithium transition-metal phosphates as efficient water oxidation catalysts." Energy Environ. Sci., 8, 1719-1724 (2015). https://doi.org/10.1039/C5EE01290B
  23. A. Gupta, W. D. Chemelewski, C. Buddie Mullins, J. B. Goodenough, "High-Rate Oxygen Evolution Reaction on Al-Doped $LiNiO_2$." Adv. Mater., 27, 6063-6067 (2015). https://doi.org/10.1002/adma.201502256
  24. Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu, Z. Shao, "A High-Performance Electrocatalyst for Oxygen Evolution Reaction: $LiCo_{0.8}Fe_{0.2}O_2$." Adv. Mater., 27, 7150-7155 (2015). https://doi.org/10.1002/adma.201503532
  25. S. Ma, Q. Zhu, L. Chen, W. Wang, D. Chen, "Largescale synthesis of $LiNi_{0.75}Fe_{0.25}PO_4$ covalently anchored on graphene nanosheets for remarkable electrochemical water oxidation." J. Mater. Chem. A, 4, 8149-8154 (2016). https://doi.org/10.1039/C6TA02157C
  26. H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, "Direct and continuous strain control of catalysts with tunable battery electrode materials." Science, 354, 1031-1036 (2016). https://doi.org/10.1126/science.aaf7680
  27. J. S. Kim, B. Kim, H. Kim, K. Kang, "Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction." Adv. Energy Mater., 8, 1702774 (2018) https://doi.org/10.1002/aenm.201702774
  28. H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, "Aqueous rechargeable Li and Na ion batteries." Chem. Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
  29. S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera, Y. Shao-Horn, "The nature of lithium battery materials under oxygen evolution reaction conditions." J. Am. Chem. Soc., 134, 16959-16962 (2012). https://doi.org/10.1021/ja307814j
  30. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping." Nature, 463, 1061 (2010). https://doi.org/10.1038/nature08777
  31. Y. Zhu, W. Zhou, Y. Chen, J. Yu, X. Xu, C. Su, M. O. Tade, Z. Shao, "Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite." Chem. Mater., 27, 3048-3054 (2015). https://doi.org/10.1021/acs.chemmater.5b00450
  32. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, "Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts." Nat. Chem., 2, 454 (2010). https://doi.org/10.1038/nchem.623
  33. B. Hammer, J. K. Norskov, "Theoretical surface science and catalysis-calculations and concepts" Advances in catalysis, 45 71-129 (2000).