References
- M. G. Lee, J. S. Park, H. W. Jang, "Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review." J. Korean Ceram. Soc., 55, 185-202 (2018). https://doi.org/10.4191/kcers.2018.55.3.08
- M. Jacobson, W. Colella, D. Golden, "Cleaning the air and improving health with hydrogen fuel-cell vehicles." Science, 308, 1901-1905 (2005). https://doi.org/10.1126/science.1109157
- S. Chu, Y. Cui, N. Liu, "The path towards sustainable energy." Nat. Mater., 16, 16 (2017). https://doi.org/10.1038/nmat4834
- M. Gratzel, "Photoelectrochemical cells." Nature 414, 338 (2001). https://doi.org/10.1038/35104607
- N. S. Lewis, D. G. Nocera, "Powering the planet: Chemical challenges in solar energy utilization." Proc. Natl. Acad. Sci. U. S. A., 103, 15729-15735 (2006). https://doi.org/10.1073/pnas.0603395103
- H. Seo, K. H. Cho, H. Ha, S. Park, J. S. Hong, K. Jin, K. T. Nam, "Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition." J. Korean Ceram. Soc., 54, 1-8 (2017). https://doi.org/10.4191/kcers.2017.54.1.12
- J. K. Hurst, "In pursuit of water oxidation catalysts for solar fuel production." Science, 328, 315-316 (2010). https://doi.org/10.1126/science.1187721
- T. A. Betley, Q. Wu, T. Van Voorhis, D. G. Nocera, Electronic design criteria for O- O bond formation via metal- oxo complexes." Inorg. Chem., 47, 1849-1861 (2008). https://doi.org/10.1021/ic701972n
-
M. W. Kanan, D. G. Nocera, "In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and
$Co^{2+}$ ." Science, 321, 1072-1075 (2008). https://doi.org/10.1126/science.1162018 - J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles." Science, 334, 1383-1385 (2011). https://doi.org/10.1126/science.1212858
- H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Norskov, T. F. Jaramillo, J. Rossmeisl, "Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis." Phys. Chem. Chem. Phys., 14, 14010-14022 (2012). https://doi.org/10.1039/c2cp40841d
- M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, "Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water." J. Am. Chem. Soc., 135, 13521-13530 (2013). https://doi.org/10.1021/ja405997s
- H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, K. Kang, "Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst." Nat. Commun., 6, 8253 (2015). https://doi.org/10.1038/ncomms9253
-
Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, "Synthesis and activities of rutile
$IrO_2\;and\;RuO_2$ nanoparticles for oxygen evolution in acid and alkaline solutions." J. Phys. Chem. Lett., 3, 399-404 (2012). https://doi.org/10.1021/jz2016507 - L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun, "Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium-catalyzed water oxidation." Angew. Chem.,Int. Ed., 50, 445-449 (2011). https://doi.org/10.1002/anie.201005141
- L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II." Nat. Chem., 4, 418 (2012). https://doi.org/10.1038/nchem.1301
- K. S. Joya, N. K. Subbaiyan, F. D'Souza, H. J. de Groot, "Surface-immobilized single-site iridium complexes for electrocatalytic water splitting." Angew. Chem.,Int. Ed., 51, 9601-9605 (2012). https://doi.org/10.1002/anie.201203560
- F. Dionigi, P. Strasser, NiFe-Based (Oxy) hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes." Adv. Energy Mater., 6, 1600621 (2016). https://doi.org/10.1002/aenm.201600621
- R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, "Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts." Nat. Mater., 11, 550 (2012). https://doi.org/10.1038/nmat3313
- J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, "A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency." J. Am. Chem. Soc., 136, 4201-4211 (2014). https://doi.org/10.1021/ja410223j
- Z. Lu, H. Wang, D. Kong, K. Yan, P.-C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, "Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction." Nat. Commun., 5, 4345 (2014). https://doi.org/10.1038/ncomms5345
- Y. Liu, H. Wang, D. Lin, C. Liu, P.-C. Hsu, W. Liu, W. Chen, Y. Cui, "Electrochemical tuning of olivinetype lithium transition-metal phosphates as efficient water oxidation catalysts." Energy Environ. Sci., 8, 1719-1724 (2015). https://doi.org/10.1039/C5EE01290B
-
A. Gupta, W. D. Chemelewski, C. Buddie Mullins, J. B. Goodenough, "High-Rate Oxygen Evolution Reaction on Al-Doped
$LiNiO_2$ ." Adv. Mater., 27, 6063-6067 (2015). https://doi.org/10.1002/adma.201502256 -
Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu, Z. Shao, "A High-Performance Electrocatalyst for Oxygen Evolution Reaction:
$LiCo_{0.8}Fe_{0.2}O_2$ ." Adv. Mater., 27, 7150-7155 (2015). https://doi.org/10.1002/adma.201503532 -
S. Ma, Q. Zhu, L. Chen, W. Wang, D. Chen, "Largescale synthesis of
$LiNi_{0.75}Fe_{0.25}PO_4$ covalently anchored on graphene nanosheets for remarkable electrochemical water oxidation." J. Mater. Chem. A, 4, 8149-8154 (2016). https://doi.org/10.1039/C6TA02157C - H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, "Direct and continuous strain control of catalysts with tunable battery electrode materials." Science, 354, 1031-1036 (2016). https://doi.org/10.1126/science.aaf7680
- J. S. Kim, B. Kim, H. Kim, K. Kang, "Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction." Adv. Energy Mater., 8, 1702774 (2018) https://doi.org/10.1002/aenm.201702774
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, "Aqueous rechargeable Li and Na ion batteries." Chem. Rev., 114, 11788-11827 (2014). https://doi.org/10.1021/cr500232y
- S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera, Y. Shao-Horn, "The nature of lithium battery materials under oxygen evolution reaction conditions." J. Am. Chem. Soc., 134, 16959-16962 (2012). https://doi.org/10.1021/ja307814j
- F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping." Nature, 463, 1061 (2010). https://doi.org/10.1038/nature08777
- Y. Zhu, W. Zhou, Y. Chen, J. Yu, X. Xu, C. Su, M. O. Tade, Z. Shao, "Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite." Chem. Mater., 27, 3048-3054 (2015). https://doi.org/10.1021/acs.chemmater.5b00450
- P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, "Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts." Nat. Chem., 2, 454 (2010). https://doi.org/10.1038/nchem.623
- B. Hammer, J. K. Norskov, "Theoretical surface science and catalysis-calculations and concepts" Advances in catalysis, 45 71-129 (2000).