• Title/Summary/Keyword: environmental loading

Search Result 2,270, Processing Time 0.028 seconds

Coefficients of Moment Equations for Long-Span Soil-Metal Box Structures (장지간 지중강판 박스구조물의 휨모멘트 계수식 제안)

  • Choi, Dong Ho;Lee, Seung Jae;Cho, Yong Woo;Park, Sang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.133-142
    • /
    • 2006
  • This paper evaluates the moment equations in the 2000 Canadian highway bridge code (CHBDC) for soil-metal box structures, which are applicable to the span less than 8 m. Finite element analyses carried out for soil-metal box structures having spans of 3-12 m using the deep corrugated metal plates under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. The coefficients of moment equations are newly proposed based on the results of numerous finite element analyses considering various design variables, such as span length, soil depth, backfill conditions. The validity of the proposed coefficients in the moment equations of the 2000 CHBDC is investigated by the comparison with the existing coefficients and numerical results of finite element analyses. The comparisons show that the moments of the 2000 CHBDC give good predictions for the span less than 8m, but underestimate for the span greater than 8m, whereas the proposed moments give good estimates of numerical results for the spans of 3-12 m. In addition, this study suggests the use of high strength steel to satisfy the requirement of design bending strength for the span greater than 8 m.

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.

Electromechanical Relation of Conductive Materials with High Electrical Resistance and Its Application to the Estimation of In_situ Stress of Structural Tendons (고저항 전도체의 전기기계적 상관작용과 작용응력 예측이 가능한 긴장재의 제안)

  • Zi, Goangseup;Jun, Kiwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.363-370
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. The strain of those materials was controlled instead of the stress during the experiment. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored. As a side result of this study, we found that the electromechanical relation of carbon fibers without epoxy matrix becomes almost linear after a certain strain.

An Experiment on Redundancy in Continuous Span Two-Girder Bridge - Effects of Lateral Bracing (연속 2-거더교의 여유도 평가 실험 - 수평브레이싱의 효과)

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.417-429
    • /
    • 2008
  • This paper presents an experimental result to evaluate the redundancy in continuous span two plate-girder bridges which are generally classified as a non-redundant load path structure. The experiments were performed when one of the two girders is seriously cracked. To estimate the effects of bottom lateral bracing on the redundancy, the experiment variable was considered as the bottom lateral bracing, and two 1/5-scaled bridge specimens with and without lateral bracing system were fabricated. The ultimate loading tests were conducted on the damaged specimens with an induced crack at a girder in the side span. The test results showed that the load carrying capacity of damaged specimen with bracing was about 1.2 times higher than that without bracing. To evaluate the redundancy in each specimen, numerical analysis was performed to calibrate the difference of dead load between the actual bridge and the test specimens. When the dead load calibration is considered, the results showed that a continuous span two-girder bridges have a reasonable redundancy even without lateral bracing. Especially, the level of redundancy is increased by about 1.8 times when the lateral bracing is provided.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Estimation of Pollutant EMCs and Loadings in Highway Runoff (국내 고속도로 강우 유출수의 EMCs 및 유출 부하량 산정)

  • Kim, Lee-Hyung;Ko, Seok-Oh;Lee, Byung-Sik;Kim, Sunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.225-231
    • /
    • 2006
  • The nonpoint source control is based on TPLMS (Total Pollution Load Management System) program. Recently, the Ministry of Environment in Korea has programed TPLMS for 4 major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. Usually the urbanization is the main pollutant sources, particularly for nonpoint pollutants, because of high imperviousness and high pollutant mass emissions. The stormwater runoff from urban areas is containing various pollutants such as sediments, metals and toxic chemicals due to human and vehicle activities. Of the various landuses, the highways are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to provide pollutant EMCs (Event Mean Concentrations) and mass loadings washed-off from highways during rainfall periods. Five monitoring locations were equipped with an automatic rainfall gage and an flow meter. The results show that the EMC ranges for 95% confidence intervals in highway land use are 45.52-125.76 mg/L for TSS, 52.04-95.48 mg/L for COD, 1.77-4.48 mg/L for TN, 0.29-0.54 mg/L for TP. The ranges of washed- off mass loading are $712.7-2,418.4mg/m^2$ for TSS and $684.1-1,779.6mg/m^2$ for COD.

Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels (반단면 프리캐스트 패널을 적용한 RC 슬래브의 내화성능 평가)

  • Chung, Chul-Hun;Im, Cho-Rong;Kim, Hyun-Jun;Joo, Sang-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.391-398
    • /
    • 2010
  • The fire performance of RC slabs with half-depth precast panel after exposure to the ISO-834 fire standard without loading has been experimentally investigated. During heating, according to the ISO 834 fire curve, concrete spalling was observed for concrete without PP(polypropylene) fibers. No spalling occurred when heating concrete containing PP fibers. The maximum temperature of RC slabs with PP fibers with half-depth precast panel was lower than that of concrete without PP fibers. The ultimate load after cooling of the RC slabs that were not loaded during the furnace tests was evaluated by means of 3 points bending tests. The ultimate load of the RC slabs without PP fibers showed a considerable reduction (around 32.5%) of the ultimate load after cooling if compared with of RC slabs with PP fibers. The ultimate load of the RC slabs with half-depth precast panel with PP fibers is higher than that of a full-depth RC slabs with PP fibers. Also, the addition of PP fibers and the use of half-depth precast panel improve fire resistance.

Analysis of Reinforcement Effect of Steel-Concrete Composite Piles by Numerical Analysis (II) - Bearing Capacity - (수치해석을 이용한 강관합성말뚝의 보강효과 분석 (II) - 지반 지지력 -)

  • Kim, Sung-Ryul;Lee, Si-Hoon;Chung, Moonkyung;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.267-275
    • /
    • 2009
  • The steel pipe of steel-concrete composite piles increases the pile strength and induces the ductile failure by constraining the deformation of the inner concrete. In this research, the load-movement relations and the reinforcement effect by the outer steel pipe in the steel-concrete composite pile were analyzed by performing three-dimensional numerical analyses, which can simulate the yielding behavior of the pile material and the elasto-plastic behavior of soils. The parameters analyzed in the study include three pile materials of steel, concrete and composite, pile diameter and loading direction. As the results, the axial capacity of the composite pile was 1.9 times larger than that of the steel pipe pile and similar with that of the concrete pile. At the allowable movement criteria, the horizontal capacity of the composite pile was 1.46 times larger than that of the steel pile and 1.25 times larger than that of the concrete pile. In addition, the horizontal movement at the pile head of the composite pile was about 78% of that of the steel pile and about 53% of that of the concrete pile, which showed that the movement reduction effect of the composite pile was significant and enables the economical design of drilled shafts.

Evaluation of Local Effect Prediction Formulas for RC Slabs Subjected to Impact Loading (충격하중이 작용하는 RC 슬래브의 국부손상 산정식에 대한 고찰)

  • Chung, Chul-Hun;Choi, Hyun;Lee, Jung Whee;Choi, Kang Ryong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.543-560
    • /
    • 2010
  • Safety-related concrete structures in a nuclear power plant must be protected against the impact of flying objects, referred to in the profession as missiles. In practice, the structural verification is usually carried out by means of empirical formulas, which relate the velocity of the impinging missile to the wall thickness needed to prevent scabbing or perforation. The purpose of this study is to reevaluate the predictability of the local effect prediction formulas for the penetration and scabbing depths and perforation thickness. Therefore, available formulas for predicting the penetration depth, scabbing thickness, and perforation thickness of concrete structures impacted by solid missiles are summarized, reviewed, and compared. A series of impact analyses is performed to predict the local effects of the projectile at impact velocities varing from 95 to 215 m/s. The results obtained from the numerical simulations have been compared with tests that were carried out at Kojima to validate numerical modelling. The simulation results show reasonable agreement with the Kojima test results for the overall impact response of the RC slabs. From these results, it seems that the Degen equation give a very good estimate of perforation thickness against a tornado projectile for test data. Finally, the results obtained from the impact analysis have been compared with Degen formula to determine the perforation thickness of the RC slab.

Analyzing Time in Port and Greenhouse Gas Emissions of Vessels using Duration Model (생존분석모형을 이용한 선박의 재항시간 및 온실가스 배출량 분석)

  • Shin, Kangwon;Cheong, Jang-Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.323-330
    • /
    • 2010
  • The time in port for vessels is one of the important factors for analyzing the operation status and the capacity of ports. In addition, the time in port for vessels can be directly used for estimating the greenhouse gas emissions resulted from vessels in port. However, it is unclear which variables can affect the time in port for vessels and what the marginal effect of each variable is. With these challenges in mind, the study analyzes the time in port for vessels arriving and departing port of Busan by using a parametric survival model. The results show that the log-logistic accelerated failure time model is appropriate to explain the time in port for 19,167 vessels arriving and departing port of Busan in 2008, in which the time in port is significantly affected by gross tonnage of vessels, service capacity of terminal, and vessel type. This study also shows that the greenhouse gas emission resulted from full-container vessels, which accounted for about 61% of all vessels with loading/unloading purpose arriving and departing port of Busan in 2008, is about "17 ton/vessel" in the boundary of port of Busan. However, the hotelling greenhouse gas emissions resulted from non-container vessels (3,774 vessels; 20%) are greater than those from the full-container vessels. Hence, it is necessary to take into account more efficient port management polices and technologies to reduce the service time of non-container vessels in port of Busan.