DOI QR코드

DOI QR Code

Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels

반단면 프리캐스트 패널을 적용한 RC 슬래브의 내화성능 평가

  • 정철헌 (단국대학교 토목환경공학과) ;
  • 임초롱 (단국대학교 토목환경공학과) ;
  • 김현준 (단국대학교 토목환경공학과) ;
  • 주상훈 ((주)케이씨산업개발 기술연구소)
  • Received : 2010.02.11
  • Accepted : 2010.05.05
  • Published : 2010.08.31

Abstract

The fire performance of RC slabs with half-depth precast panel after exposure to the ISO-834 fire standard without loading has been experimentally investigated. During heating, according to the ISO 834 fire curve, concrete spalling was observed for concrete without PP(polypropylene) fibers. No spalling occurred when heating concrete containing PP fibers. The maximum temperature of RC slabs with PP fibers with half-depth precast panel was lower than that of concrete without PP fibers. The ultimate load after cooling of the RC slabs that were not loaded during the furnace tests was evaluated by means of 3 points bending tests. The ultimate load of the RC slabs without PP fibers showed a considerable reduction (around 32.5%) of the ultimate load after cooling if compared with of RC slabs with PP fibers. The ultimate load of the RC slabs with half-depth precast panel with PP fibers is higher than that of a full-depth RC slabs with PP fibers. Also, the addition of PP fibers and the use of half-depth precast panel improve fire resistance.

본 연구에서는 반단면 프리캐스트 패널을 갖는 RC 슬래브에 대해서 비재하 상태에서 ISO-834 화재곡선을 적용한 가열시험을 수행하였다. 가열시험시 PP섬유 혼입되지 않은 실험체에서는 콘크리트의 폭렬이 발생되고, PP섬유가 혼입된 실험체에서는 폭렬이 발생되지 않았다. PP섬유가 혼입된 반단면 프리캐스트 패널을 적용한 RC 슬래브의 발생온도는 PP섬유가 혼입되지 않은 경우보다 낮은 수준을 보였다. 화재 가열실험 후 상온상태로 냉각된 RC 슬래브의 극한하중을 평가하기 위하여 3점 휨실험을 수행하였다. 실험결과, PP섬유가 혼입되지 않은 RC 슬래브는 PP섬유가 혼입된 실험체와 비교해 약 32.5% 정도 극한하중이 감소하는 결과를 보였다. 또한, PP섬유가 혼입된 반단면 프리캐스트 패널을 갖는 RC 슬래브의 극한하중은 PP섬유가 혼입된 전두께 RC 슬래브보다 큰 수준을 보였다. 이상의 결과에서 PP섬유의 혼입과 반단면 프리캐스트 패널 적용시 화재에 대한 저항능력이 향상됨을 확인하였다.

Keywords

References

  1. 김홍열, 채한식, 전현규, 염광수(2007) Fiber Cocktail을 혼입한 고강도콘크리트의 고온시압축강도 특성 및 모델 제시에 관한 실험적 연구, 한국콘크리트학회 학술발표논문집, 한국콘크리트학회, pp. 605-608.
  2. 염광수, 전현규, 김홍렬(2009) 섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화 실험, 한국콘크리트학회논문집, 한국콘크리트학회, Vol. 21, No. 4, pp. 465-471.
  3. 한국산업규격(2005) 건축 구조 부재의 내화시험방법-기둥의 성능 조건 KS F 2257-7, 한국표준협회.
  4. Abrams, M.S. (1971) Compressive strength of concrete at temperatures to 1600F, Temperature and Concrete, SP-25, American Concrete Institute, Detroit, pp. 33-58.
  5. ACI Committee 216 (1989) Guide for Determining the Fire Endurance of Concrete Elements, ACI 216R-89, American Concrete Institute, Detroit.
  6. Ali, F. (2002) Is high strength concrete more susceptible to explosive spalling than normal strength concrete in fire, Fire and Materials, Vol. 26, pp. 127-130. https://doi.org/10.1002/fam.791
  7. Atkinson, T. (2004) Polypropylene fibers control explosive spalling in high-performance concrete, Concrete, Vol. 38, No. 10, pp. 69-70.
  8. EUROCODE 2 (2004) Design of Concrete Structures-Part 1.2: General rules- Stuructural Fire Design, Brussels, July.
  9. ISO (1975) Fire Resistance Tests-Elements of Building Construction, International Standard ISO 834, Geneva.
  10. Lie, T.T. and Kodur, V.K.R. (1996) Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures, Canadian Journal of Civil Engineering, Vol. 23, pp. 511-517. https://doi.org/10.1139/l96-055
  11. Nishida, A., Ymazaki, N., Inoue, H., Schneider, U., and Diederichs, U. (1995) Study on the properties of high-strength concrete with short polypropylene fibre for spalling resistance, Proceedings of International Conference on Concrete under Severe Conditions, CONSEC'95, Vol. 2, Sapporo, Japan, pp. 1141-1150.
  12. Poon, C.S., Shui, Z.H., and Lam, L. (2004) Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures, Cement and Concrete Research, Vol. 34, No. 12, pp. 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
  13. Purkiss, J.A. (1984) Steel fibre reinforced concrete at elevated temperatures, International Journal of Cement Composites and Lightweight Concrete, Vol. 6, No. 3, pp. 179-184. https://doi.org/10.1016/0262-5075(84)90006-X
  14. Suhaendi, S.L. and Horiguchi, T. (2006) Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat eposition, Cement and Concrete Research, Vol. 36, pp. 1672-1678. https://doi.org/10.1016/j.cemconres.2006.05.006
  15. Yang, H., Han, L.H., and Wang, Y.H. (2008) Effects of heating loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns, Journal of Constructional Steel Research, Vol. 64, pp. 556-570. https://doi.org/10.1016/j.jcsr.2007.09.007