• Title/Summary/Keyword: environmental fatigue evaluation

Search Result 82, Processing Time 0.028 seconds

Environmental Fatigue Evaluation for Thermal Stratification Piping of Nuclear Power Plants (열성층을 포함하는 원자력발전소 배관의 환경피로평가)

  • Kim, Taesoon;Kim, Kyuhyung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.164-169
    • /
    • 2018
  • A detailed fatigue evaluation procedure was developed to mitigate the excessive conservativeness of the conventional environmental fatigue evaluation method for the pressurizer spray line elbow of domestic new nuclear power plants. The pressurizer spray line is made of austenitic stainless steel, which is relatively sensitive to the environmentally assisted fatigue, and has a low degree of design margin in terms of environmentally assisted fatigue due to the thermal stratification phenomenon on the pipe cross section as a whole or locally. In this study, to meet the environmental fatigue design requirements of the pressurizer spray line elbow, the new environmental fatigue evaluation has been performed, which used the ASME Code NB-3200-based detailed fatigue analysis and the environmental fatigue correction factor instead of the existing NB-3600 evaluation method. As a result, the design requirements for environmentally assisted fatigue were met in all parts of the pressurizer spray line elbow including the fatigue weakened zones by thermal stratification.

A Study on Application of Fatigue Correction Factor for Environmental Fatigue Evaluation of Pressurizer Surge Line (가압기 밀림관 환경피로평가를 위한 피로보정계수 적용에 관한 연구)

  • Yang, Jun-Seog;Park, Chi-Yong;Kang, Seon-Ye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1151-1157
    • /
    • 2009
  • Nuclear power plants applying for the continued operation over design life are required to address the effects of reactor water environment in fatigue design requirement of the ASME Code. Reactor water environmental effects are generally evaluated by calculating fatigue correction factors on fatigue usage. This paper describes the application for pressurizer surge line of environmental fatigue correction factors and the strain rate impact in the application. From this paper, the environmental fatigue correction factors resulted from the assumption of a step change in temperature are especially compared with those calculated from the data measured during plant startup. As a conclusion of this paper, the design transient conditions applied to the fatigue design may be conservative in case of the environmental fatigue evaluation.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

Assessment of environmental fatigue in nuclear power plants: A comparative analysis of the effects of plasticity correction

  • Tae-Song Han;Hee-Jin Kim;Nam-Su Huh;Hyeong-Yeon Lee;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3764-3774
    • /
    • 2024
  • In accordance with Regulatory Guide 1.207, Rev.1, fatigue assessments must be conducted considering the influence of primary coolant environment in nuclear reactors. Environmental fatigue, resulting from corrosion in the primary coolant, is evaluated in air fatigue life assessments through the application of an environmental fatigue correction factor. This environmental fatigue correction factor depends on sulfur content, operating temperature, dissolved oxygen, and strain rate. It remains constant for sulfur content, operating temperature, and dissolved oxygen, while strain rate introduces potential errors based on the analysis method. The current fatigue evaluation procedure for air, following ASME B&PV Code Sec.III, NB-3200, employs elastic analysis with a simplified elastic-plastic correction factor(Ke). However, Ke factor is considered excessively conservative, prompting less conservative alternatives proposed by JSME, RCC-M, ASME Code Case N-779. This study applied both ASME Ke and JSME Ke for fatigue evaluations considering environmental effects. Additionally, fatigue assessments accounting for elastic-plastic effects were conducted using Neuber and Glinka methods, compared with actual experiments. The analysis systematically examined changes in fatigue life and the environmental fatigue correction factor due to plastic effects in environmental fatigue evaluations.

Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping (열성층 및 냉각재 환경이 오스테나이트 배관의 피로수명에 미치는 영향 평가)

  • Choi, Shin-Beom;Woo, Seung-Wan;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Lee, Jin-Ho;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.660-667
    • /
    • 2008
  • During the last two decades, lots of efforts have been devoted to resolve thermal stratification phenomenon and primary water environment issues. While several effective methods were proposed especially in related to thermally stratified flow analyses and corrosive material resistance experiments, however, lack of details on specific stress and fatigue evaluation make it difficult to quantify structural behaviors. In the present work, effects of the thermal stratification and primary water are numerically examined from a structural integrity point of view. First, a representative austenitic nuclear piping is selected and its stress components at critical locations are calculated in use of four stratified temperature inputs and eight transient conditions. Subsequently, both metal and environmental fatigue usage factors of the piping are determined by manipulating the stress components in accordance with NUREG/CR-5704 as well as ASME B&PV Codes. Key findings from the fatigue evaluation with applicability of pipe and three-dimensional solid finite elements are fully discussed and a recommendation for realistic evaluation is suggested.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials (이종재료 접착제 접합부의 환경 피로강도 평가)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

The Fatigue Evaluation of Structural Steel Members under Variable-Amplitude Loading (변동하중을 받는 강구조부재의 피로거동 해석)

  • Chang, Dong Il;Kwak, Jong Hyun;Bak, Yong Gol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.167-175
    • /
    • 1988
  • The principle objective of this study is to evaluate the fatigue behavior of structural steel components of highway bridges subjected to service stresses. The main aspects of this investigation are; 1) a measurement and statistical analysis of service stress cycles observed in highway bridge. 2) fatigue tests under equivalent constant-amplitude(CA) loading and simulated variable-amplitude(VA) loading 3) a evaluation of the fatigue behavior under VA-loading by eqivalent root mean cube (RMC) stress range. Theoretically, the RMC model is adequate in evaluation of fatigue behavior under VA-loading, because the regression coefficient (m) of crack growth rate is 3 approximately. The result of fatigue test shows that the RMC model is fitter than the current RMS model in fatigue evaluation under VA-loading. The interaction effects and sequence effects under VA-loading affect little fatigue life of structural components. As the transition rate of stress ranges is higher, the crack growth rate is higher.

  • PDF

An Evaluation of Fatigue Life for Aging Aircraft Structure (장기운용항공기 구조물의 잔여 피로수명예측 기법)

  • Lee, Eungyeong;Jeong, Yooin;Kim, Sangshik
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.516-522
    • /
    • 2015
  • Aging aircraft structures are inevitably exposed to environment for a long time facing many potential problems, including corrosion and wide spread fatigue damage, which in turn cause the degradation of flight safety. In this study, the environmental surface damages on aging aircraft structures induced during service were quantitatively analyzed. Additionally, S-N fatigue tests were performed with center hole specimens extracted from aging aircraft structures. From the results of quantitative analyses of the surface damages and fatigue tests, it is concluded that corrosion pits initiated during service reduce the fatigue life significantly. Finally, using the fracture mechanics and the EIFS (equivalent initial flaw size) concepts, the remaining fatigue life was predicted based on actual fatigue test results.

Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation

  • Liu, Peipei;Jang, Jinho;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.301-310
    • /
    • 2020
  • The laser ultrasonic technique is gaining popularity for nondestructive evaluation (NDE) applications because it is a noncontact and couplant-free method and can inspect a target from a remote distance. For the conventional laser ultrasonic techniques, a pulsed laser is often used to generate broadband ultrasonic waves in a target structure. However, for crack detection using nonlinear ultrasonic modulation, it is necessary to generate narrowband ultrasonic waves. In this study, a pulsed laser is shaped into dual-line arrays using a spatial mask and used to simultaneously excite narrowband ultrasonic waves in the target structure at two distinct frequencies. Nonlinear ultrasonic modulation will occur between the two input frequencies when they encounter a fatigue crack existing in the target structure. Then, a nonlinear damage index (DI) is defined as a function of the magnitude of the modulation components and computed over the target structure by taking advantage of laser scanning. Finally, the fatigue crack is detected and localized by visualizing the nonlinear DI over the target structure. Numerical simulations and experimental tests are performed to examine the possibility of generating narrowband ultrasonic waves using the spatial mask. The performance of the proposed fatigue crack localization technique is validated by conducting an experiment with aluminum plates containing real fatigue cracks.