• Title/Summary/Keyword: environmental durability

Search Result 836, Processing Time 0.025 seconds

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Study on Hydration Heat of Blended Belite Binder (벨라이트계 혼합 결합재의 수화열 특성에 관한 연구)

  • Lee, Kewn-Chu;Cho, Jae-Woo;Jung, Sang-Hwa;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.145-150
    • /
    • 2011
  • Presently, mass concrete structures are being built in federal and private projects of civil infrastructures and building structures. The hydration heat of mass concrete structures is the most important factor in the quality of concrete matrix and construction period. Moreover, internal cracks caused by hydration heat degrades durability, water tightness, and strength of concrete. To reduce hydration heat, it is necessary to blend belite cement (${\beta}-C_2S$) with industrial by-products (i.e. granulated slag and fly ash). In this experiment, 14 levels of binary binders and 4 levels of ternary binders were used to understand the effect of different replacement ratio on hydration heat, strength and microstructure (i.e. SEM and XRD) of mortar. Cumulative hydration heat at 28 days for the binary and ternary binders was affected by replacement ratio of fly ash and/or granulated slag. As fly ash content increased, hydration heat decreased. As granulated slag content increased, reduction rate of the hydration heat was lower than when fly ash was used. Especially, the hydration heat of ternary binder blended with 40% flyash and 30% granulated slag showed about 50% of hydration heat from using belite cement (P). The study results showed that the temperature rise of concrete matrix can be decreased by using blended belite binders producing low hydration heat and reasonable strength.

Evaluation of Field Applicability of Pavement Materials Using Wood Chips (목재칩을 활용한 포장재의 현장 적용성 평가)

  • Lee, Jundae;Bang, Sungtak;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.13-19
    • /
    • 2015
  • Construction materials using soil which is the most common material around us have many advantages, but their long-term durability and sensation of walking as pavements have problems. Therefore, they are used after compaction or mixed with various hardening agents such as lime and cement for strength enhancement. However, studies on the behavior of pavement materials mixed with environment-friendly hardening agents or admixtures to improve walking property are still insufficient. In this study, therefore, in order to evaluate the appropriate mixing ratio and field application characteristics of pavement materials using mixed soils with environment-friendly hardening agents and natural materials such as wood chips, mechanical tests were performed to evaluate the rational mixing ratios and the ball test was performed as an elasticity test to evaluate the field applicability. The results suggest that the content of wood chips should be selected at 1.5% or lower according to the purpose of the structure, and the hardening agent at 10~15%. The evaluation results for GB/SB coefficient ratio which indicates the walking property show that the appropriate mixing ratio of the hardening agent in terms of the sensation of walking is 15% of lower, but different mixing ratios should be chosen according to the proportion of wood chips.

Physical Properties of Recycled Sidewalk Pavement Using Wood Chip (Wood Chip을 사용한 자원순환형 보도 포장체의 물성에 관한 연구)

  • Yu, Hyeok-Jin;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The purpose of this study is to find problems about pedestrian road of tourist resort and to make new type of sidewalk pavement with wood chip and binder using urethane resin on the parks and tourist resort. The wood chip pavement has new economics and durability with comfortable texture. Samples of these pavement materials were tested for tensile strength, permeability and ball rebound value. Also, after immersion for 24 hours, tensile strength, samples' thickness and weight were measured and discussed the strength reduction according to the water immersion. Tensile strength experimentation was examined on dry condition and water immersion. The result of examination on dry condition was 1.06MPa and on water immersion was 0.67MPa. The results showed 36.8% decreasing rate of tensile strength. Permeability experiment test based on field permeability method of pavement were conducted as a result, permeability coefficients were in the range of 0.67~0.78mm/s that all exceeds object permeability coefficient. Elasticity experiment was based on elasticity test method of Japan road association. GB coefficient was 21% and SB coefficient was 10%. GB coefficient and SB coefficient increased if fine aggregate were increased.

  • PDF

Generation of Free Chlorine Using $RuO_2$/ Ti Electrode with Various Amount of Ru (Ru 코팅량에 따른 $RuO_2$/Ti 전극의 염소 발생)

  • Lee, JunCheol;Pak, DaeWon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.715-719
    • /
    • 2012
  • We investigated the effects of electrochemical characteristics and generation of chlorine by the different amount of Ru coating which was prepared for $RuO_2$/Ti electrode coated with 1.5 mg, 2.5 mg, 5.5 mg, 8.5 mg Ru per unit area ($cm^2$). As a Result of the cycle voltammetry experiments, chlorine overvoltage of Ru-coated electrodes showed to be the nearly sustained value of approximately 1.15V (vs. Ag/AgCl). By contrary, According to the results of the AC impedance spectroscopy and potentiodynamic polarization tests, the amount of Ru per unit area ($cm^2$) included 2.5 mg, 3.5 mg as $RuO_2$/Ti offered the highest levels of durability which was electrode resistance and corrosion rate appeared to be $0.4582{\Omega}$, $0.5267{\Omega}$ and 0.082 mm/yr, 0.058 mm/yr, respectively. It was also observed that generation of chlorine coated with 3.5 mg per unit area ($cm^2$) was the highest value of 15.2 mg/L.

A Study on the Carbonation Characteristics of Fly Ash Concrete by Accelerated Carbonation Test (급속 촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구)

  • Choi, Sung;Lee, Kwang-Myong;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • The increase of industrial carbonic dioxide emissions has accelerated the carbonation of reinforced concrete structures, which drops off their durability. Although advanced countries have already taken safety control measures against the carbonation of RC structures, it is still difficult now to accurately predict the actual carbonation depth. Additionally, it requires much time and efforts. Recently, it is possible to get the data more rapidly through accelerated carbonation test with the $CO_2$ concentration of 100%. In this paper, the carbonation test results obtained by two test methods such as the normal carbonation test method and the accelerated carbonation test method, were compared to investigate the carbonation characteristics of fly ash concrete. The accelerated carbonation test on concrete specimens with the pre-curing age of 180 days was also carried out to examine the carbonation characteristics of fly ash concrete at long-term age. Consequently, fly ash concrete at early age was vulnerable to carbonation and however, its carbonation resistance at long-term ages was improved compared with OPC concrete.

A Study on the Resistance of Freezing-Thawing for the Material of Concrete or Asphalt Using Smashed Rock (쇄석을 이용한 콘크리트 및 아스팔트용 재료의 동결융해 저항성)

  • Kim, Young-Su;Bang, In-Ho;Heo, No-Young;Lee, Jea-Ho;Choi, Jeong-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.35-47
    • /
    • 2002
  • Soil and rock were yielded during construction of subway in Taegu. Produced rock is a kind of a sedimentary rock with low strength and low durability of shrinkage. So it is difficult using for resources engineering. But in our country, it is very important to use material resources due to lack of natural resources. In this study, after cracking sedimentary rock like black shale and red shale, they are compared with granite which usually used road constriction field to investigate property of use for road construction. Consequently, the engineering character of origin rock is satisfactory, but the soundness test, black shale and red shale are less than KS 12.9%, 37.5% respectively. The result of concrete freezing-thawing test shows that the strength among three materials is not a wide difference but red shale has relatively low strength. The result of asphalt freezing-thawing test with 50 cycles indicates that the stability of red shale in lower than KS 484~561kg on base course, 336~375kg on surface course respectively. A further research should be needed for propriety to the material of shale.

  • PDF

A Case Studty on the Ground Reinforcement and Waterproofing Effect of Weathering and Fault Zone by Special Injection Tip Equipment Using Microcement Type (특수주입선단장치에 의한 마이크로시멘트계 약액주입의 풍화대, 단층파쇄대의 지반보강 및 차수효과 사례연구)

  • Do, Jongnam;Jung, Jongju;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2009
  • A grouting method has been widely used in construction of large-scale structure to reduce permeability and reinforce the ground. If cement and grout material were not mixed well in the injection tip equipment, an opposite flow and interception state of the chemical grouting can occur. McG (Multi-mixing counterflow prevented Grouting, McG) method installed a special grouting device to allow better mixing of the grouting material(above fineness $6,000cm^2/g$) and prevent backward flow. The block of nozzle also diversify powder rate of cement. YSS (Youngil Special Silicate, YSS) that lowers $Na_2O$ and thereby increases durability was developed by gel-forming reaction material. The seepage state and unconfined compressive strength of the injection material using the special injection tip equipment was tested in this study. The results of this study showed that the uniaxial compressive strength, permeability, N-value, TCR and RQD were improved by this method. Engineering characteristics obtained by the special injection tip method will be compared with those by the other method through various field tests from now on.

  • PDF