• Title/Summary/Keyword: environment-friendly concrete

Search Result 186, Processing Time 0.031 seconds

A study on the economic analysis of the SL(Self Leveling) Inorganic Floor covering (SL 무기질 바닥재의 경제성 분석에 관한 연구)

  • Park, Ho-Geun;Hong, Seong-Wook;Yang, Je-Yong;Kim, Sang-Won;Shin, Chan-Ho;Choe, Min-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.105-109
    • /
    • 2011
  • This study is concerned with the development of the SL inorganic floor covering. First, volatile organic compounds, inorganic test profile on the SL through the flooring is environment-friendly inorganic noncombustible floor finishes the event of fire toxic gases (such as volatile organic compounds) emissions have been identified as not at all. Second, SL-breathable material, the concrete floor to prevent aging, long life, which are three levels of noise, shock-absorbing function was decreased. Third, SL economic analysis of mineral flooring terrazzo tile floors compared with the normal material. On a terrazzo tile cost 13,500 won ~ 24,500 won, but It have found that, in terms of labor SL 36,899 won ~ 38,899 won flooring mineral balance. Occurs in the total amount when compared with terrazzo tile floors and 25,399 won 3T, 5T and economical analysis concludes that the original 12,399 won.

  • PDF

Design and evaluation of renovated NSI T/O PC sleeper (개량형 NSI 분기기용 PC침목 설계와 성능평가)

  • Park, Choon-Bok;Kwon, Ho-Jin;Lee, Young-Sou;Yoon, Byung-Hyun;Shin, Won-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1129-1137
    • /
    • 2007
  • 50kg NSI PCT(Prestress Concrete Timber, sleeper) is developed for the purpose of low maintenance cost, Extend life cycle, Track stability, Friendly Environment, Good running quality. In this study, as a part of research which is to make renovated NSI turnout, the main objective of this study is the optimization of PC sleeper's section, the number of PS tension wire. For this purpose, the finite element analysis was conducted to evaluate the serviceability and the safety of NSI PC sleeper developed.

  • PDF

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Flexural Behavior of Laminated Wood Beams Strengthened with Novel Hybrid Composite Systems: An Experimental Study

  • Mehmet Faruk OZDEMIR;Muslum Murat MARAS;Hasan Basri YURTSEVEN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.526-541
    • /
    • 2023
  • Wooden structures are widely used, particularly in earthquake zones, owing to their light weight, ease of application, and resistance to the external environment. In this study, we aimed to improve the mechanical properties of laminated timber beams using novel hybrid systems [carbon-fiber-reinforced polymer (CFRP) and wire rope]. Within the scope of this study, it is expected that using wood, which is an environmentally friendly and sustainable building element, will be more economical and safe than the reinforced concrete and steel elements currently used to pass through wide openings. The structural behavior of the hybrid-reinforced laminated timber beams was determined under the loading system. The experimental findings showed that the highest increase in the values of laminated beams reinforced with steel ropes was obtained with the 2N reinforcement, with a maximum load of 38 kN and a displacement of 137 mm. Thus, a load increase of 168% and displacement increase of 275% compared with the reference sample were obtained. Compared with the reference sample, a load increase of 92% and a displacement increase of 14% were obtained. Carbon fabrics placed between the layers with fiber-reinforced polymer (FRP) prevented crack development and provided significant interlayer connections. Consequently, the fabrics placed between the laminated wooden beams with the innovative reinforcement system will not disrupt the aesthetics or reduce the effect of earthquake forces, and significant reductions can be achieved in these sections.

Impact of Energy Consumption, FDI and Trade Openness on Carbon Emissions in lvory Coast

  • Ange Aurore KADI;Liang LI;David Dauda LANSANA;Joseph FUSEINI
    • Asian Journal of Business Environment
    • /
    • v.14 no.3
    • /
    • pp.23-35
    • /
    • 2024
  • Purpose: The study focuses on the impact of Foreign Direct Investment (FDI), trade openness, and energy consumption on carbon dioxide emissions in the Ivory Coast. It aims to quantitatively evaluate the effects of FDI, energy consumption, and trade openness on CO2 emissions in Ivory Coast. Research design, data, and methodology: The research uses an econometric framework and the Autoregressive Distributed Lag (ARDL) model to analyze time-series data from 1980 to 2021 between these factors. Results: The analysis revealed that FDI significantly impacts the carbon dioxide emissions, FDI showed a negative impact on carbon emissions in the long-run equilibrium term. Also, energy consumption impacted CO2 emissions in the long-run equilibrium term. Conclusion: To mitigate the upsurge of CO2 emissions in the Ivorian context, concrete policy, including enactment and adherence to strict environmental regulations, adoption and prioritization of eco-friendly products and technologies, and investment in renewable energy infrastructure are recommended. The study contributes to the global discussion on sustainable development by offering a model for similar assessments in other emerging nations facing simultaneous economic growth and environmental conservation challenges.

Microstructure and mechanical properties of ternary pastes activated with multi-colors glass and brick wastes

  • I.Y. Omri;N. Tebbal;Z. Rahmouni
    • Advances in concrete construction
    • /
    • v.17 no.3
    • /
    • pp.167-177
    • /
    • 2024
  • Disposal of waste glass derived from bottle or packaging glass, flat glass, domestic glass is one of the major environmental defies. Moreover, the remnants of bricks resulting from the remnants of buildings are also considered an important factor in polluting the environment due to the difficulty of filling or getting rid it. The aim of this study is to valorize these wastes through chemical activation to be an environmentally friendly material. The Microstructure, compressive strength, setting time, drying shrinkage, water absorption of different pastes produced by clear glass (CG), green glass (GG) and brick waste (BP) activated were tested and recorded after curing for 3, 7, 28 and 365 days. Five samples of pastes were mixed in proportions represented by: 100% GP (GP), 100% GGP (GGP), 100% BP (BP), 90% GP + 10% BP (GPB) and 90% GGP + 10% BP (GGPB). Various parameters considered in this study include sodium hydroxide concentrations (10 mol/l); 0.4 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured at 60℃ for 24 hours. Experimental results revealed that the addition of 10% of BP resulted in an increased strength performance of geopolymer paste especially with GGPB compared to GGP in 365 days. In addition, the 10% amount of BP increases the absorption and shrinkage rate of geopolymer pastes (GPB and GGPB) by reducing the setting time. SEM results revealed that the addition of BP and GP resulted in a dense structure.

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images (UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석)

  • SONG, Bong-Geun;KIM, Gyeong-Ah;SEO, Kyeong-Ho;LEE, Seung-Won;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.162-175
    • /
    • 2018
  • The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

An Expremental Study on Connections Friction Test of Improvement for Coastal Environment Block (Coastal Environments 블록의 개발을 위한 연결부 마찰 실험)

  • Kim, Chun-Ho;Kim, Sang-Hoonq
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The plain and simple shape water front structure were designed and installed for wave protection and wave resistance. But the installation of these plain and simple structure cause deficiency of environmental affinity. Also the resonance phenomena from the reflective wave and shipwave of the harbor incident wave caused high tide and wave, consequently maintaining the tranquility of inside harbor, give difficulty for mooring the ship and loading-unloading, increase the possibility of ship collision at the quray wall and landing place To solve these problems, we develop the environmentally friendly wave dissipation block. And installation efficiency, stability of the blocks through experiment of C.E Block Joint.

  • PDF

A study on the fire resistance characteristics of mud flat mortar (갯벌모르타르의 내화성능에 관한 실험적 연구)

  • Yang, Seonghwan;Kim, Huidoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.589-596
    • /
    • 2015
  • As urbanization progressed along with quantitative expansion of the construction industry, concrete has developed diversely as a material that is the most extensively used in the construction industry. However, aggregate resources that are an essential element of concrete production are gradually being depleted and the phenomenon of aggregate shortage has been intensifying due to the reinforcement of regulations on environmental issues. Therefore, in the present study, environment friendly mortar was made by replacing aggregate with mud that is dumped when dredging sand is dumped. To identify the dynamic characteristics of the mortar and to identify its fire resistance efficiency, the mortar was heated and its residual compressive strength was measured. In the results, the residual compressive strength values of MM1, MM2, and MM3 were 45%, 95%, and 57.7% respectively and the mix MM2 showed the highest fire resistance efficiency.

Development of Remote Controlled Demolition Equipment and Its Demolition Method for High-Rise Buildings (고층건물을 위한 원격제어 해체전용 장비 및 공법 개발)

  • Park, Jong-Hyup;Hong, Dae-Hie;Seo, Young-Soo;Kim, Hyo-Jin;Hong, Seok-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.957-960
    • /
    • 2008
  • The purpose of this study is to explore a safe, advanced, and environment-friendly demolition equipments and their operation methods. As an initial achievement, the capacity of the existing equipments have been evaluated through technical discussions and demonstrations with some experts in the related industry. From these evaluations, it was concluded that a haptic based remote control with force feed-back mechanism and sensor fusion functions would be the most appropriate to the demolition equipments. Therefore, a novel haptic device that is adequately designed for the demolition equipments is proposed in this paper. Top-down demolition method is also proposed, which is very effective in the demolition of high-rise buildings.

  • PDF