DOI QR코드

DOI QR Code

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images

UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석

  • SONG, Bong-Geun (Disaster Scientific Investigation Division, National Disaster of Management Institute) ;
  • KIM, Gyeong-Ah (Dept. of Environmental Engineering, Changwon National University) ;
  • SEO, Kyeong-Ho (Dept. of Eco-friendly Offshore Plant FEED Engineering of Changwon National University) ;
  • LEE, Seung-Won (Dept. of Environmental Engineering, Changwon National University) ;
  • PARK, Kyung-Hun (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 송봉근 (국립재난안전연구원 재난원인조사실) ;
  • 김경아 (창원대학교 환경공학과) ;
  • 서경호 (창원대학교 친환경해양플랜트FEED공학과) ;
  • 이승원 (창원대학교 환경공학과) ;
  • 박경훈 (창원대학교 토목환경화공융합공학부)
  • Received : 2018.09.12
  • Accepted : 2018.09.30
  • Published : 2018.09.30

Abstract

The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

본 연구는 도시 열환경 문제를 개선하기 위해 UAV 영상 표면온도 자료를 이용하여 피복재질별 표면온도 특성을 분석하였다. 그리고 UAV 영상 표면온도를 유사한 시기에 측정된 현장 실측 표면온도와 비교하였다. UAV 영상과 실측 표면온도와 비교한 결과, 가장 큰 차이를 보이는 피복재질은 회색 콘크리트 지붕 재질로 약 $7.8^{\circ}C$로 나타났다. 우레탄은 $0.3^{\circ}C$ 차이로 가장 적었다. 산점도를 분석한 결과 설명력이 63.75%로 상관성이 높은 것으로 분석되었다. 표면온도가 가장 높은 재질은 금속지붕으로 $48.9^{\circ}C$로 나타났고, 우레탄($43.4^{\circ}C$), 회색 콘크리트 지붕($42.9^{\circ}C$) 순이었다. 표면온도가 낮은 재질은 나지($30.2^{\circ}C$), 수목 및 잔디($30.2^{\circ}C$), 흰색 콘크리트 지붕($34.9^{\circ}C$)이었다. UAV 영상 표면온도 자료는 피복재질의 열적특성을 정밀하게 분석 가능하였다. 향후, 실측자료와의 비교를 통해 UAV 영상의 정확성 검 보정과 위성영상과 연계하여 UAV 영상 자료의 활용성을 확대할 필요가 있다.

Keywords

References

  1. Benali, A., A.C. Carvalho, J.P. Nunes, N. Carvalhais and A. Santos. 2012. Estimating air temperature in Portugal using MODIS LST data. Remote Sensing of Environment 124:108-121. https://doi.org/10.1016/j.rse.2012.04.024
  2. Buyantuyev, A. and J. Wu. 2010. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 25(1):17-33. https://doi.org/10.1007/s10980-009-9402-4
  3. Cohen, P., O. Potchter, and A. Matzarakis. 2012. Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment 51:285-295. https://doi.org/10.1016/j.buildenv.2011.11.020
  4. Edward, N., L. Chen, Y. Wang and C. Yuan. 2012. A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment 47:256-271. https://doi.org/10.1016/j.buildenv.2011.07.014
  5. Edward, N. 2009. Policies and technical guidelines for urban planning of high density cities-air ventilation assessment (AVA) of Hong Kong. Building and Environment 44:1478-1488. https://doi.org/10.1016/j.buildenv.2008.06.013
  6. Gyeongnam Green Environmental Center. 2014. Exhibition installation and effect analysis of cool roof for mitigating urban heat island responding climate change, Report of Gyeongnam Green Environmental Center pp.99.
  7. Hamada, S. and T. Ohta. 2010. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban Forestry & Urban Greening. 9(1):15-24. https://doi.org/10.1016/j.ufug.2009.10.002
  8. Hien, W.N. and S.K. Jusuf. 2008. GIS-based greenery evaluation on campus master plan. Landscape and Urban Planning. 84(2):166-182. https://doi.org/10.1016/j.landurbplan.2007.07.005
  9. Hung, T., D. Uchihama, S. Ochi and Y. Yasuoka. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation 8(1):34-48. https://doi.org/10.1016/j.jag.2005.05.003
  10. Jung, E.H., D.W. Kim, J.W. Ryu, J.G. Cha and K.S. Son. 2008. Evaluation of spatial characteristic of wind corridor formation in Daegu area using satellite data. Journal of The Korean Association of Geographic Information Studies 11(2):73 -84.
  11. Kato, S. and Y. Yamaguchi. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment 110(1):1-17. https://doi.org/10.1016/j.rse.2007.02.011
  12. Kim, G.A. and K.H. Park. 2018. Temperature change in building layers according to cool roofs application - A case study at Changwon National University. KIEAE Journal 18(4):103-111. https://doi.org/10.12813/kieae.2018.18.4.103
  13. Klok, L., S. Zwart, H. Verhagen and E. Mauri. 2012. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources. Conservation and Recycling 64:23-29. https://doi.org/10.1016/j.resconrec.2012.01.009
  14. Kloog, I., A. Chudnovsky, P. Koutrakis and J. Schwartz. 2012. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA. Science of the Total Environment 432:85-92. https://doi.org/10.1016/j.scitotenv.2012.05.095
  15. Li, J., C. Song, L. Cao, F. Zhu, X. Meng and J. Wu. 2011. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment 115(12):3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  16. Nichol, J.E., W.Y. Fung, K. Lam and M.S. Wong. 2009, Urban heat island diagnosis using ASTER satellite images and'in situ' air temperature. Atmospheric Research 94(2):276-284. https://doi.org/10.1016/j.atmosres.2009.06.011
  17. Oliveira, S., H. Andrade and T. Vaz. 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon, Building and Environment 46(11):2186-2194. https://doi.org/10.1016/j.buildenv.2011.04.034
  18. Sobrino J.A., R. Oltra-Carrio, G. Soria, R. Bianchi and M. Paganini. 2011. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment 117:50-56.
  19. Song, B.G. 2011. Development of integrated spatial environmental assessment and planning methods for improving the urban climate and air quality. Master Thesis, Changwon National Univ., Changwon, South Korea. pp.1-93.
  20. Song. B.G. 2014. Development of environment planning methodology for mitigation of climate change and heat island effect in urban. Doctoral Thesis, Changwon National Univ., Changwon, South Korea. pp.36-50.
  21. Song, B.G. and K.H. Park. 2010. An analysis of cold air generation area considering climate-ecological function-a case study of Changwon, South Korea-. Journal of the Korean Association of Geographic Information Studies 13(1):114-127.
  22. Song, B.G. and K.H. Park. 2012. Analysis of heat island characteristics considering urban space at nighttime. Journal of the Korea Association Geographic Information Studies 15(1):133-143. https://doi.org/10.11108/kagis.2012.15.1.133
  23. Song, B.G. and K.H. Park. 2013. Air ventilation evaluation at nighttime for the construction of wind corridor in urban area. Journal of the Korea Association Geographic Information Studies 16(2):16-29. https://doi.org/10.11108/kagis.2013.16.2.016
  24. Song, B.G., G.A. Kim and K.H. Park. 2016. Reduction in indoor and outdoor temperature of office building with cool roof. KIEAE Journal 16(6):95-101. https://doi.org/10.12813/kieae.2016.16.6.095
  25. Winston, T.L.C., L.P. Ronald, A.M. Chris and J.B. Anthony. 2011. Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theoretical and Applied Climatology 103(1-2):197-211. https://doi.org/10.1007/s00704-010-0293-8
  26. Yu, C. and W.N. Hien. 2006. Thermal benefits of city parks. Energy and Buildings 38(2):105-120. https://doi.org/10.1016/j.enbuild.2005.04.003

Cited by

  1. 원격탐사 및 시뮬레이션의 열지도 구축을 위한 공간정보 활용 효율화 연구 vol.36, pp.6, 2018, https://doi.org/10.7780/kjrs.2020.36.6.1.11