• Title/Summary/Keyword: enthalpy model

Search Result 182, Processing Time 0.024 seconds

A study on the analysis of domestic gas explosion (실내가스폭발 해석에 관한 연구)

  • Kim Sang Sub;Cha Jae Ou
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.24-29
    • /
    • 2003
  • Numerical analysis was conducted to predict the damage of indoor gas explosion for the propagation of explosion flame. Indoor gas diffusion distribution due to gas leakage was obtained by diffusion equation that adopted initial conditions from reference. Enthalpy of each gas-mixture ratio and reduced mechanism was applied to calculate flame temperature, and laminar combustion velocities with the variant of each gas concentration from reference were applied to the gas mixture. Turbulent combustion velocity was modeled by coupling of turbulent energy and laminar combustion velocity in k-$\epsilon$ model. For the analysis of flame propagation cartesian and cylindrical coordinate were used to indoor position and flame propagation respectively. The study analyzes the cause of pressure rising with the variation of flame propagation by glass damage, and the result shows that indoor pressure rising with ignition position varies window dimension.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

Adsorption of Zinc Ion in Synthetic Wastewater by Ethylenediaminetetraacetic Acid-Modified Bentonite (에틸렌다이아민테트라아세트산으로 개질된 벤토나이트를 이용한 합성폐수 내 아연 이온 흡착)

  • Jeong, Myung-Hwa;Kwon, Dong-Hyun;Lim, Yeon-Ju;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • Ethylenediaminetetraacetic acid-modified bentonite (EMB) was used for adsorption of zinc ion (Zn) from aqueous solution, compared with unmodified bentonite (UB). Parameters such as dose (0.750 ~ 3.125 g/L), mixing intensity (10 ~ 150 rpm), contact time (0.17 ~ 30 min), pH (2 ~ 7), and temperature (298 ~ 338 K), were studied. Zn removal efficiency for EMB was 20 ~ 30 % higher, than that for UB, in all experiments. Thermodynamic studies demonstrated that adsorption process was spontaneous with Gibb's free energy (${\Delta}G$) values, ranging between -5.211 and -7.175 kJ/mol for EMB, and -0.984 and -2.059 kJ/mol for UB, and endothermic with enthalpy (${\Delta}H$) value of 9.418 kJ/mol for EMB and 7.022 kJ/mol for UB. Adsorption kinetics was found to follow the pseudo-second order kinetics model, and its rate constant was 3.41 for EMB and $2.00g/mg{\cdot}min$ for UB. Adsorption equilibrium data for EMB were best represented by the Langmuir adsorption isotherm, and calculated maximum adsorption capacity was 2.768 mg/g. It was found that the best conditions for Zn removal of EMB within the range of operation used, were 3.125 g/L dose, 90 rpm intensity, 10 min contact time, pH 4, and 338 K. Therefore, EMB has good potential for adsorption of Zn.

Study on Adsorption Characteristics of Erythrosine Dye from Aqeous Solution Using Activated Carbon (활성탄에 의한 에리스로신 염료수용액의 흡착특성에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.224-229
    • /
    • 2011
  • Adsorption characteristics of erythrosine dye onto the activated carbon has been investigated in a batch system with respect to initial concentration, contact time and temperature. Kinetic studies of the adsorption of erythrosine were carried out at 298 K, using aqueous solutions with 100, 250 and 500 mg/L concentration of erythrosine. The adsorption process followed a pseuo second order model, and the adsorption rate constant (k2) decreased with increasing the initial concentration of erythrosine. The equilibrium process can be well discribed by Freundlich isotherm in the temperature range from 298 to 318 K. Free energy of adsorption (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) change were calculated to predict the nature the adsorption. The estimated values for ${\Delta}G^o$ were -3.72~-9.62 kJ/mol over the activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^o$ indicates that the adsorption of erythrosine dye on activated carbon is an endothermic process.

Micromechanical Analysis for Effective Properties of HfC-coated Carbon/Carbon Composites (HfC-코팅 C/C 복합재료의 유효 물성 산출을 위한 미시역학 전산 해석)

  • Roh, Kyung Uk;Kim, Ho Seok;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.961-968
    • /
    • 2020
  • In this study, the effective thermal conductivity and elastic modulus of heat-resistant coating materials are analyzed by using micromechanical computational models. Three-dimensional computational models for HfC-coated carbon/carbon composites were created with Simpleware, and finite element analysis was performed. The porosity and thickness changes in the coating layer were taken into account to identify the tendency of effective material properties. In addition, the coupon specimen was produced to compare the thermal conductivity measured by experiments with the one obtained by finite element analysis according to temperature changes, and the analysis results were close to the measured values. This confirms that micromechanical computational analysis is appropriate in the calculation of effective material properties of coating composites.

Influence of pH on Chelation of BaCl2 and EDTA Using Isothermal Titration Calorimetry (등온적정열량계를 이용한 BaCl2와 EDTA 킬레이션 결합 반응의 pH 영향)

  • Ga Eun Yuk;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.279-284
    • /
    • 2023
  • Isothermal titration calorimetry (ITC) is a useful technique to obtain thermodynamic binding properties such as enthalpy, Gibbs free energy, entropy, and stoichiometry of the chelation reaction. A single independent binding site model was used to evaluate the thermodynamic binding properties in BaCl2 and ethylenediaminetetraacetic acid (EDTA) in Trince and HEPES buffers. ITC enables us to elucidate the binding mechanism and find an optimal chelation condition for BaCl2 and EDTA in the pH range of 7~11. Chelation of BaCl2 and EDTA is a spontaneous endothermic reaction. As pH increased, entropic contributions dominated. The optimal pH range is narrow around pH 9.0, where 1:1 binding between BaCl2 and EDTA occurs.

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State (상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링)

  • Bong-Seop Lee;Hun Yong Shin;Choong Hee Joe
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.550-554
    • /
    • 2023
  • Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures. Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density, enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships. Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Basic Blue 3 (염기성 염료 Basic Blue 3에 대한 야자계 입상활성탄의 흡착 특성)

  • Park, Ha Neul;Choi, Han Ah;Won, Sung Wook
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.96-102
    • /
    • 2018
  • In this study, adsorption characteristics of coconut shell-based granular activated carbon (CS-GAC) on Basic Blue 3 (BB3) were evaluated. As the dosage of CS-GAC increased, the removal efficiency of BB3 tended to increase and the initial dye concentration of 50 mg/L was completely removed at 0.2 g dosage. Adsorption equilibrium achieved within 270 and 420 min at the initial concentrations of 25 and 50 mg/L, respectively, and the experimental data were represented by the pseudo-second-order model. The maximum uptakes ($q_{max}$) predicted by the Langmuir model were 34.45, 46.63 and 53.10 mg/g at 298, 308 and 318 K, respectively. The $q_{max}$ value increased as the temperature increased. Also, the Gibbs free energy (${\Delta}G$) was changed to -7.37, -8.19 and -10.40 kJ/mol with increasing temperature. The enthalpy change (${\Delta}H$) and the entropy change (${\Delta}S$) were 34.47 kJ/mol and 0.15 J/mol K, respectively. Therefore adsorption of BB3 by CS-GAC was spontaneous and endothermic.