DOI QR코드

DOI QR Code

Adsorption Characteristics of Coconut Shell-based Granular Activated Carbon on a Basic Dye Basic Blue 3

염기성 염료 Basic Blue 3에 대한 야자계 입상활성탄의 흡착 특성

  • Park, Ha Neul (Department of Ocean System Engineering, Gyeongsang National University) ;
  • Choi, Han Ah (Department of Marine Environmental Engineering and Institute of Marine Industry, Gyeongsang National University) ;
  • Won, Sung Wook (Department of Ocean System Engineering, Gyeongsang National University)
  • 박하늘 (경상대학교 해양시스템공학과) ;
  • 최한아 (경상대학교 해양환경공학과, 해양산업연구소) ;
  • 원성욱 (경상대학교 해양시스템공학과)
  • Received : 2017.07.19
  • Accepted : 2017.10.16
  • Published : 2018.02.01

Abstract

In this study, adsorption characteristics of coconut shell-based granular activated carbon (CS-GAC) on Basic Blue 3 (BB3) were evaluated. As the dosage of CS-GAC increased, the removal efficiency of BB3 tended to increase and the initial dye concentration of 50 mg/L was completely removed at 0.2 g dosage. Adsorption equilibrium achieved within 270 and 420 min at the initial concentrations of 25 and 50 mg/L, respectively, and the experimental data were represented by the pseudo-second-order model. The maximum uptakes ($q_{max}$) predicted by the Langmuir model were 34.45, 46.63 and 53.10 mg/g at 298, 308 and 318 K, respectively. The $q_{max}$ value increased as the temperature increased. Also, the Gibbs free energy (${\Delta}G$) was changed to -7.37, -8.19 and -10.40 kJ/mol with increasing temperature. The enthalpy change (${\Delta}H$) and the entropy change (${\Delta}S$) were 34.47 kJ/mol and 0.15 J/mol K, respectively. Therefore adsorption of BB3 by CS-GAC was spontaneous and endothermic.

본 연구에서는 Basic Blue 3 (BB3)에 대한 야자계 입상활성탄의 흡착특성을 평가하였다. 입상활성탄의 투여량이 증가함에 따라 BB3의 제거율은 증가하는 경향을 보였고, 0.2 g 투여량에서 초기농도 50 mg/L의 BB3가 완전히 제거되었다. 흡착평형은 초기농도 25 mg/L와 50 mg/L에서 각각 270분과 420분이 소요되었으며, 실험데이터는 유사 2차 속도식으로 잘 묘사되었다. Langmuir 식에서 예측된 최대흡착량은 298, 308, 318 K에서 34.45, 46.63, 53.10 mg/g으로 온도가 증가할수록 증가하였다. 또한, Gibbs 자유에너지 변화(${\Delta}G$)는 온도 증가에 따라 -7.37, -8.19, -10.40 kJ/mol으로 변화하였고, 엔탈피 변화(${\Delta}H$) 및 엔트로피 변화(${\Delta}S$)는 34.47 kJ/mol과 0.15 J/mol K로 계산되었다. 따라서 야자계 입상활성탄에 의한 BB3 흡착은 자발적이고 흡열적이었다.

Keywords

References

  1. Gupta, V. K. and Suhas, J., "Application of Low-cost Adsorbents for Dye Removal - A Review," J. Environ. Manag., 90, 2313-2342(2009). https://doi.org/10.1016/j.jenvman.2008.11.017
  2. Novotny, C., Dias, N., Kapanen, A., Malachova, K., Vandrovcova, M., Itavaara, M. and Lima, N., "Comparative Use of Bacterial, Algal and Protozoan Tests to Study Toxicity of Azo- and Anthraquinone Dyes," Chemosphere, 63, 1436-1442(2006). https://doi.org/10.1016/j.chemosphere.2005.10.002
  3. Wawrzkiewicz, M., "Removal of C.I. Basic Blue 3 Dye by Sorption onto Cation Exchange Resin, Functionalized and Non-functionalized Polymeric Sorbents from Aqueous Solutions and Wastewaters," Chem. Eng. J., 217, 414-425(2013). https://doi.org/10.1016/j.cej.2012.11.119
  4. Marungrueng, K. and Pavasant, P., "Removal of Basic Dye (Astrazon Blue FGRL) Using Macroalga Caulerpa lentillifera," J. Environ. Manag., 78, 268-274(2006). https://doi.org/10.1016/j.jenvman.2005.04.022
  5. Tan, I. A. W., Hameed, B. H. and Ahmad, A. L., "Equilibrium and Kinetic Studies on Basic Dye Adsorption by Oil Palm Fibre Activated Carbon," Chem. Eng. J., 127, 111-119(2007). https://doi.org/10.1016/j.cej.2006.09.010
  6. Aksu, Z., "Application of Biosorption for the Removal of Organic Pollutants: A Review," Process Biochem., 40, 997-1026(2005). https://doi.org/10.1016/j.procbio.2004.04.008
  7. Robinson, T., McMullan, G., Marchant, R. and Nigam, P., "Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative," Bioresour. Technol., 77, 247-255(2001). https://doi.org/10.1016/S0960-8524(00)00080-8
  8. Ismadji, S., Sudaryanto, Y., Hartono, S. B., Setiawan, L. E. K. and Ayucitra, A., "Activated Carbon from Char Obtained from Vacuum Pyrolysis of Teak Sawdust: Pore Structure Development and Characterization," Bioresour. Technol., 96, 1364-1369(2005). https://doi.org/10.1016/j.biortech.2004.11.007
  9. Lee, J. J., "Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Yellow 14 Using Activated Carbon," Korean Chem. Eng. Res., 54, 225-261(2016).
  10. Lee, J. J., "Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon," Korean Chem. Eng. Res., 53, 1-7(2015). https://doi.org/10.9713/kcer.2015.53.1.1
  11. Aljeboree, A. M., Alshirifi, A. N. and Alkaim, A. F., "Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon," Arab. J. Chem., 10, S3381-S3393(2017). https://doi.org/10.1016/j.arabjc.2014.01.020
  12. Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A. and Rogalski, M., "Adsorption of Dyes on Activated Carbon Prepared from Apricot Stones and Commercial Activated Carbon," J. Taiwan Inst. Chem. Eng., 53, 112-121(2015). https://doi.org/10.1016/j.jtice.2015.02.025
  13. Porselvi, E. and Krishnamoorthy, P., "Removal of Acid Yellow by Agricultural Waste," J. Mater. Environ. Sci., 5, 408-415(2014).
  14. Hameed, K. S., Muthirulan, P. and Sundaram, M. M., "Adsorption of Chromotrope Dye onto Activated Carbons Obtained from the Seeds of Various Plants: Equilibrium and Kinetics Studies," Arab. J. Chem., 10, S2225-S2233(2017). https://doi.org/10.1016/j.arabjc.2013.07.058
  15. Tan, I. A. W., Ahmad, A. L. and Hameed, B. H., "Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies," Desalination, 225, 13-28(2008). https://doi.org/10.1016/j.desal.2007.07.005
  16. Zogorski, J. S., Faust, S. D. and Haas, J. H., "The Kinetics of Adsorption of Phenols by Granular Activated Carbon," J. Colloid Interface Sci., 55, 329-341(1976). https://doi.org/10.1016/0021-9797(76)90041-2
  17. Basibuyuk, M. and Forster, C. F., "An Examination of the Adsorption Characteristics of a Basic Dye (Maxilon Red BL-N) on to Live Activated Sludge System," Process Biochem., 38, 1311-1316(2003). https://doi.org/10.1016/S0032-9592(02)00327-8
  18. Chu, H. C. and Chen, K. M., "Reuse of Activated Sludge Biomass: I. Removal of Basic Dyes from Wastewater by Biomass," Process Biochem., 37, 595-600(2002). https://doi.org/10.1016/S0032-9592(01)00234-5
  19. Shi, Y., Kong, X., Zhang, C., Chen, Y. and Hua, Y., "Adsorption of Soy Isoflavones by Activated Carbon: Kinetics, Thermodynamics and Influence of Soy Oligosaccharides," Chem. Eng. J., 215-216, 113-121(2013). https://doi.org/10.1016/j.cej.2012.10.100
  20. Durala, M. U., Cavasa, L., Papageorgiouc, S. K. and Katsarosc, F. K., "Methylene Blue Adsorption on Activated Carbon Prepared from Posidonia Oceanica(L.) Dead Leaves: Kinetics and Equilibrium Studies," Chem. Eng. J., 168, 77-85(2011). https://doi.org/10.1016/j.cej.2010.12.038
  21. Zhang, J., Li, Y., Zhang, C. and Jing, Y., "Adsorption of Malachite Green from Aqueous Solution onto Carbon Prepared from Arundo Donax Root," J. Hazard. Mater., 150, 774-782(2008). https://doi.org/10.1016/j.jhazmat.2007.05.036
  22. Kim, S. Y., Jin, M. R., Chung, C. H., Yun, Y.-S., Jahng, K. Y. and Yu, K.-Y., "Biosorption of Cationic Basic Dye and Cadmium by the Novel Biosorbent Bacillus catenulatus JB-022 Strain," Environ. Sci. Technol., 119, 443-439(2015).
  23. Han, Y. S., Kim, H. J. and Park, J. K., "Millimeter-sized Spherical Ion-sieve Foams with Hierarchical Pore Structure for Recovery of Lithium from Seawater," Chem. Eng. J., 210, 482-489(2012). https://doi.org/10.1016/j.cej.2012.09.019
  24. Ma, L. W., Chen, B. Z., Chen, Y. and Shi, X. C., "Preparation, Characterization and Adsorptive Properties of Foam-type Lithium Adsorbent," Micro. Meso. Mater., 142, 147-153(2011). https://doi.org/10.1016/j.micromeso.2010.11.028
  25. Wong, S. Y., Tan, Y. P., Abdullah, A. H. and Ong, S. T., "The Removal of Basic and Reactive Dyes Using Quartenised Sugar Cane Bagasse," Journal of Physical Science, 20, 29-74(2009).
  26. Lee, J. J., "Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Rhodamin-B onto Granular Activated Carbon," Appl. Chem. Eng., 27, 199-204(2016). https://doi.org/10.14478/ace.2016.1015
  27. Dogan, M., Alkan, M., Demirbas, O., Ozdemir, Y. and Ozmetin, C., "Adsorption Kinetics of Maxilon Blue GRL onto Sepiolite from Aqueous Solutions," Chem. Eng. J., 124, 89-101(2006). https://doi.org/10.1016/j.cej.2006.08.016
  28. Ghaedi, M., Hossainian, H., Montazerozohori, M., Shokrollahi, A., Shojaipour, F., Soylak, M. and Purkait, M. K., "A Novel Acorn Based Adsorbent for the Removal of Brilliant Green," Desalination, 281, 226-233(2011). https://doi.org/10.1016/j.desal.2011.07.068
  29. Ryoo, K. S., Hong, Y. P. and Ahn, C. J., "A Comparative Study on Adsorption Characteristics of PCBs in Transformer Oil Using Various Adsorbents," J. Korean Chem. Soc., 56, 692-699(2012). https://doi.org/10.5012/jkcs.2012.56.6.692
  30. Sivakumar, P. and Palanisamy, P. N., "Adsorption Studies of Basic Red 29 by a Non Conventional Activated Carbon Prepared from Euphorbia Antiquorum L," International Journal of ChemTech Research, 1, 502-510(2009).
  31. Lee, J. J., "Adsorption Equilibrium, Kinetic and Thermodynamic Parameter Studies of Acid Green 27 Using Activated Carbon," Korean Chem. Eng. Res., 55, 514-519(2017).
  32. Sulak, M. T. Demirbas, E. and Kobya, M., "Removal of Astrazon Yellow 7GL from Aqueous Solutions by Adsorption onto Wheat Bran," Bioresour. Technol., 98, 2590-2598(2007). https://doi.org/10.1016/j.biortech.2006.09.010
  33. Hasani, S., Ardejani, F. D. and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye (Basic Red 18) Adsorption onto Montmorillonite: Numerical Simulation and Laboratory Experiments," Korean J. Chem. Eng., 34, 2265-2274(2017). https://doi.org/10.1007/s11814-017-0110-5

Cited by

  1. Utilization of paper mill sludge for removal of cationic textile dyes from aqueous solutions vol.54, pp.16, 2018, https://doi.org/10.1080/01496395.2018.1552295