DOI QR코드

DOI QR Code

Micromechanical Analysis for Effective Properties of HfC-coated Carbon/Carbon Composites

HfC-코팅 C/C 복합재료의 유효 물성 산출을 위한 미시역학 전산 해석

  • Roh, Kyung Uk (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Kim, Ho Seok (High-Enthalpy Plasma Research Center, Jeonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Jeonbuk National University)
  • Received : 2020.09.07
  • Accepted : 2020.11.16
  • Published : 2020.12.01

Abstract

In this study, the effective thermal conductivity and elastic modulus of heat-resistant coating materials are analyzed by using micromechanical computational models. Three-dimensional computational models for HfC-coated carbon/carbon composites were created with Simpleware, and finite element analysis was performed. The porosity and thickness changes in the coating layer were taken into account to identify the tendency of effective material properties. In addition, the coupon specimen was produced to compare the thermal conductivity measured by experiments with the one obtained by finite element analysis according to temperature changes, and the analysis results were close to the measured values. This confirms that micromechanical computational analysis is appropriate in the calculation of effective material properties of coating composites.

본 연구에서는 미시역학 전산 모형을 통해 열 보호 시스템에 사용되는 내열 코팅 재료의 유효 열전도도와 탄성 계수를 산출하고 분석하였다. 상용 프로그램 Simpleware를 이용하여 HfC로 코팅된 탄소/탄소 복합재료의 삼차원 전산 모형을 생성한 후 유한요소 해석을 수행하였다. 유효 물성의 경향을 확인하기 위해 코팅층의 기공도와 두께 변화를 고려하였다. 또한, 실제 시편을 제작하여 실험에서 온도에 따라 측정된 열전도도와 해석에서 산출된 열전도도를 서로 비교하였으며 해석 결과가 측정값에 근접하였다. 이를 통해 내열 코팅 재료의 유효 물성을 산출하는데 있어서 미시역학 전산 해석이 적절함을 확인하였다.

Keywords

References

  1. Gnoffo, P. A., "Planetary-entry Gas Dynamics," Annual Review of Fluid Mechanics, Vol. 31, No. 1, 1999, pp. 459-494. https://doi.org/10.1146/annurev.fluid.31.1.459
  2. Mullenix, N. and Povitsky, A., "Hypersonic Ablation of Graphite Thermal Protection Systems with Surface Defects," Journal of Spacecraft and Rockets, Vol. 53, No. 5, 2016, pp. 912-929. https://doi.org/10.2514/1.A33380
  3. Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T. and Fischer, J. E., "Carbon Nanotube Composites for Thermal Management," Applied physics letters, Vol. 80, No. 15, 2002, pp. 2767-2769. https://doi.org/10.1063/1.1469696
  4. Yee, W., "Oxidation of Carbon-Carbon Composite," Diss. MSc. Thesis, Southern Illinois University Carbondale, 2016.
  5. Sciti, D., Yoo, Y. W. and Lee, S. H., "Characterization of Ultra High Temperature Ceramic Coatings Deposited by Vacuum Plasma Spraying," Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III, 2015.
  6. Yang, Y., Li, K., Zhao, Z. and Li, H., "Ablation Resistance of HfC-SiC Coating Prepared by Supersonic Atmospheric Plasma Spraying for SiC-coated C/C Composites," Ceramics International, Vol. 42, No. 4, 2016, pp. 4768-4774. https://doi.org/10.1016/j.ceramint.2015.11.161
  7. Yin, Z., Tao, S. and Zhou, X., "Effect of the Thickness on Properties of Al2O3 Coatings Deposited by Plasma Spraying," Materials characterization, Vol. 62, No. 1, 2011, pp. 90-93. https://doi.org/10.1016/j.matchar.2010.11.002
  8. Wang, Y. J., Li, H. J., Fu, Q. G., Wu, H., Yao, D. J. and Wei, B. B., "Ablative Property of HfC-based Multilayer Coating for C/C Composites under Oxy-acetylene Torch," Applied Surface Science, Vol. 257, No. 10, 2011, pp. 4760-4763. https://doi.org/10.1016/j.apsusc.2010.11.020
  9. Sun, W., Xiong, X., Huang, B. Y., Li, G. D., Zhang, H. B., Chen, Z. K. and Zheng, X. L., "ZrC Ablation Protective Coating for Carbon/Carbon Composites," Carbon, Vol. 47, No. 14, 2009, pp. 3368-3371. https://doi.org/10.1016/j.carbon.2009.07.047
  10. Yoo, H. I., Kim, H. S., Hong, B. G., Sihn, I. C., Lim, K. H., Lim, B. J. and Moon, S. Y., "Hafnium Carbide Protective Layer Coatings on Carbon/Carbon Composites Deposited with a Vacuum Plasma Spray Coating Method," Journal of the European Ceramic Society, Vol. 36, No. 7, 2016, pp. 1581-1587. https://doi.org/10.1016/j.jeurceramsoc.2016.01.032
  11. Klett, J. W., Ervin, V. J. and Edie, D. D., "Finite-Element Modeling of Heat Transfer in Carbon/Carbon Composites," Composites Science and technology, Vol. 59, No. 4, 1999, pp. 593-607. https://doi.org/10.1016/S0266-3538(98)00099-2
  12. Hu, D., Fu, Q., Liu, T. and Tong, M., "Structural Design and Ablation Performance of ZrB2/MoSi2 Laminated Coating for SiC Coated Carbon/Carbon Composites," Journal of the European Ceramic Society, Vol. 40, No. 2, 2020, pp. 212-219. https://doi.org/10.1016/j.jeurceramsoc.2019.09.046
  13. Pahr, D. H. and Bohm, H. J., "Assessment of Mixed Uniform Boundary Conditions for Predicting the Mechanical Behavior of Elastic and Inelastic Discontinuously Reinforced Composites," Computer Modeling in Engineering and Sciences, Vol. 34, No. 2, 2008, pp. 117-136.
  14. Munro, R. G., "Material Properties of a Sintered α-SiC," Journal of Physical and Chemical Reference Data, Vol. 26, No. 5, 1997, pp. 1195-1203. https://doi.org/10.1063/1.556000
  15. Shabalin, I. L., Ultra-high Temperature Materials II, Springer Netherlands, 2019.
  16. Tan, Y., Yan, Y., Li, X. and Guo, F., "Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites," Mechanics of Composite Materials, Vol. 53, No. 4, 2017, pp. 551-562. https://doi.org/10.1007/s11029-017-9685-5
  17. Cheon, J. H., Roh, K. U. and Shin, E. S., "Computational Modeling and Analysis of Ablative Composites Using Micro-tomographic Images," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 9, 2019, pp. 642-648. https://doi.org/10.5139/JKSAS.2019.47.9.642