• Title/Summary/Keyword: enhanced TCP

Search Result 73, Processing Time 0.019 seconds

A TCP Performance Enhancement Scheme in Wireless Mesh Networks (무선 메쉬 네트워크에서 TCP 성능 향상 기법)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1139-1145
    • /
    • 2010
  • Wireless mesh network is similar to ad-hoc network, so when transferred to the data packet in the wireless environment, interfered factor arise. When TCP(Transport Control Protocol) was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem that TCP unfairness and congestion collapse over wireless mesh network. But packet losses due to transmission errors are more frequent. The cause of transmission error in wireless ad-hoc network may be inexactly regarded as indications of network congestion. And then, Congestion Control Algorithm was running by this situation causes the TCP performance degradation. In this paper, proposed TCP can adaptively regulate the congestion window through moving node in the Wireless Mesh Network. And it enhanced the performance.

An Efficient TCP Congestion Control Scheme in ATM Networks (ATM 망에서 효율적인 TCP 폭주 제어 기법)

  • 최지현;김남희;김변곤;전용일;정경택;전병실
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1653-1660
    • /
    • 2003
  • In this paper, we proposed an enhanced TCP congestion control algorithm using RTT with congestion window parameter cwnd to minimize the effect of TCP congestion. The proposed scheme could avoid the occurrence of frequent congestion and decrease the delay caused by the recovery time and the using amount of switch buffer. Through the simulation, we showed that the proposed scheme cm acquire higher performance than the existing scheme. There are 22.56% improvement at the average using buffer efficiency, and packet drop rate is 0.1% which is less than existing scheme.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

Gallop-Vegas: An Enhanced Slow-Start Mechanism for TCP Vegas

  • Ho Cheng-Yuan;Chan Yi-Cheng;Chen Yaw-Chung
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.351-359
    • /
    • 2006
  • In this article, we present a new slow-start variant, which improves the throughput of transmission control protocol (TCP) Vegas. We call this new mechanism Gallop-Vegas because it quickly ramps up to the available bandwidth and reduces the burstiness during the slow-start phase. TCP is known to send bursts of packets during its slow-start phase due to the fast window increase and the ACK-clock based transmission. This phenomenon causes TCP Vegas to change from slow-start phase to congestion-avoidance phase too early in the large bandwidth-delay product (BDP) links. Therefore, in Gallop-Vegas, we increase the congestion window size with a rate between exponential growth and linear growth during slow-start phase. Our analysis, simulation results, and measurements on the Internet show that Gallop-Vegas significantly improves the performance of a connection, especially during the slow-start phase. Furthermore, it is implementation feasible because only sending part needs to be modified.

Adaptive TCP Retransmission Mechanism for Continuous Packets Loss on Wireless Evironment (무선환경에서 연속적인 패킷손실을 고려한 TCP 재전송 기법)

  • Hong Choong Seon;Kang Jae-sin;Kim Dae-sun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.931-936
    • /
    • 2004
  • We need to have an adaptive TCP protocol that can be tolerable on wireless network environement. TCP Westwood for use in the environe-ment that have a very high loss rate like a sattelite was proposed by modifying the existing bulk retransmission protocol. Bulk retransmission mechanism shows a highly enhanced performance on networks that have a very high loss rate but are prone to bursty loss networks. Also, it can exprience less performance on low late transmission environement. This paper proposes Adaptive Bulk Retransmission Mechanism that adjusts the number of bulk retransmitted packets based on the network conditions. The proposed mechanism was evaluated by using NS-2.

An Enhanced Wireless TCP protocol based on Explicit Error Notification (에러 보고를 통한 무선 TCP의 성능 향상)

  • 김경희;김낙명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1656-1664
    • /
    • 2001
  • When a packet loss occurs in a communication network operating a TCP protocol, the TCP protocol regards it that the loss has resulted from network congestion. Then the TCP protocol performs congestion control. When it is applied to the wireless network having quite a high BER characteristics, the performance of TCP protocol is degraded very much. In this paper, we propose an Explicit Error Notification(EEN) algorithm to improve the performance of the wireless TCP When a packet loss occurs in the wireless network, the TCP receiver decodes the TCP segment sequence number and the address of the TCP sender and receiver, and then informs the TCP sender of the error in wireless network by sending a NACK. It is to distinguish packets in error from losses of network congestion. In this paper, the performance of the proposed EEN algorithm is analyzed and simulated. In fact, as more errors are corrected, the proposed algorithm shows a larger improvements in performance.

  • PDF

A Traffic Conditioning Mechanism for Enhancing the Fairness of TCP and UDP Flows (TCP 와 UDP 흐름의 공평성 향상을 위한 트래픽 조절 메커니즘)

  • Lee, Sung-Keun
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2004
  • Differentiated services network (DiffServ) aims to provide the same service to a group of connections that have similar Quality of Service requirements. One of the essential function to realize DiffServ is the traffic conditioning mechanism. The paper proposes the enhanced traffic conditioning mechanism which can assure the reserved rates of TCP and UDP flows and support fair distribution of excess bandwidth. The simulation results show that the new mechanism is rather insensitive of the effect of UDP against TCP throughput, and performs better both in terms of throughput assurance and fair distribution of excess bandwidth in case of well-provisioned and over-provisioned network environment.

  • PDF

A Study of TCP Performance with Snoop Protocol over Fading Wireless Links

  • Cho, Yang-Bum;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.214-218
    • /
    • 2004
  • In this paper, we have analyzed TCP performance over wireless correlated fading links with and without Snoop protocol. For a given value of the packet error rate, TCP performance without Snoop protocol is degraded as the fading is getting fast (i.e. the user moves fast). When Snoop protocol is introduced in the base station, TCP performance is enhanced in most wireless environments. Especially the performance enhancement derived from using Snoop protocol is large in fast fading channel. This is because packet errors become random and sporadic in fast fading channel and these random packet errors (mostly single packet errors) can be compensated efficiently by Snoop protocol's local packet retransmissions. But Snoop protocol can't give a large performance improvement in slow fading environments where long bursts of packet errors occur. Concerning to packet error rate, Snoop protocol results in the highest performance enhancement in the channel with mid-high values of packet error rate. This means Snoop protocol cannot fully fulfill its ability under too low or too high packet error rate environments.

Adaptive Congestion Control Scheme of TCP for Supporting ACM in Satellite PEP System (위성 PEP시스템에서 ACM 지원을 위한 적응형 TCP 혼잡제어기법)

  • Park, ManKyu;Kang, Dongbae;Oh, DeockGil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Currently satellite communication systems usually use the ACM(Adaptive Coding and Modulation) to extend the link availability and to increase the bandwidth efficiency. However, when ACM system is used for satellite communications, we should carefully consider TCP congestion control to avoid network congestions. Because MODCODs in ACM are changed to make a packet more robust according to satellite wireless link conditions, bandwidth of satellite forward link is also changed. Whereas TCP has a severe problem to control the congestion window for the changed bandwidth, then packet overflow can be experienced at MAC or PHY interface buffers. This is a reason that TCP in transport layer does not recognize a change of bandwidth capability form MAC or PHY layer. To overcome this problem, we propose the adaptive congestion control scheme of TCP for supporting ACM in Satellite PEP (Performance Enhancing Proxy) systems. Simulation results by using ns-2 show that our proposed scheme can be efficiently adapted to the changed bandwidth and TCP congestion window size, and can be useful to improve TCP performance.

Active Congestion Control Using Active Router′s Feedback Mechanism (액티브 라우터의 피드백 메커니즘을 이용한 혼잡제어 기법)

  • Choe, Gi-Hyeon;Jang, Gyeong-Su;Sin, Ho-Jin;Sin, Dong-Ryeol
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.513-522
    • /
    • 2002
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization which TCP congestion window size is fluctuated during congestion occurred and if RTT (Round Trip Time) is increased, three duplicate ACK packets is not a correct congestion signal because congestion maybe already disappeared and the host may send more packets until receive the three duplicate ACK packets. Recently there is increasing interest in solving end-to-end congestion control using active network frameworks to improve the performance of TCP protocols. ACC (Active congestion control) is a variation of TCP-based congestion control with queue management In addition traffic modifications nay begin at the congested router (active router) so that ACC will respond more quickly to congestion than TCP variants. The advantage of this method is that the host uses the information provided by the active routers as well as the end points in order to relieve congestion and improve throughput. In this paper, we model enhanced ACC, provide its algorithm which control the congestion by using information in core networks and communications between active routers, and finally demonstrate enhanced performance by simulation.