• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.043 seconds

Reliability-Based Topology Optimization Based on Bidirectional Evolutionary Structural Optimization (양방향 진화적 구조최적화를 이용한 신뢰성기반 위상최적화)

  • Yu, Jin-Shik;Kim, Sang-Rak;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) based on bidirectional evolutionary structural optimization (BESO). In design of a structure, uncertain conditions such as material property, operational load and dimensional variation should be considered. Deterministic topology optimization (DTO) is performed without considering the uncertainties related to the design variables. However, the RBTO can consider the uncertainty variables because it can deal with the probabilistic constraints. The reliability index approach (RIA) and the performance measure approach (PMA) are adopted to evaluate the probabilistic constraints in this study. In order to apply the BESO to the RBTO, sensitivity number for each element is defined as the change in the reliability index of the structure due to removal of each element. Smoothing scheme is also used to eliminate checkerboard patterns in topology optimization. The limit state indicates the margin of safety between the resistance (constraints) and the load of structures. The limit State function expresses to evaluate reliability index from finite element analysis. Numerical examples are presented to compare each optimal topology obtained from RBTO and DTO each other. It is verified that the RBTO based on BESO can be effectively performed from the results.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Optimization to Control Buckling Temperature and Mode Shape through Continuous Thickness Variation of Composite Material (복합소재의 연속 두께 변화를 통한 좌굴온도 및 모드형상 최적화)

  • Lee, Kang Kuk;Lee, Hoo Min;Yoon, Gil Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.347-353
    • /
    • 2021
  • In this study, we presented a novel size optimization framework to control the linear buckling temperature and several buckling modes of plates, by optimizing thickness values of composite structures for practical engineering applications. Predicting the buckling temperature and mode shape of structures is a vital research topic in engineering to achieve structural stability. However, optimizing designs of engineering structures through engineering intuition is challenging. To address this limitation, we proposed a method that combines finite element simulation and size optimization. Based on the idea that the structural buckling temperature and mode shape of a plate are affected by the thickness of the structure, the thickness values of the nodes of the target structure were set as the design variables in this optimization method; and the buckling temperature values, and buckling mode shapes were set as the objective functions. This size optimization method enabled the determination of optimal thickness distributions, to induce the desired buckling temperature values and mode shapes. The validity of the proposed method was verified in terms of their buckling temperature values and buckling mode shapes, using several numerical examples of rectangular composite structures.

Optimization of energy saving device combined with a propeller using real-coded genetic algorithm

  • Ryu, Tomohiro;Kanemaru, Takashi;Kataoka, Shiro;Arihama, Kiyoshi;Yoshitake, Akira;Arakawa, Daijiro;Ando, Jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.406-417
    • /
    • 2014
  • This paper presents a numerical optimization method to improve the performance of the propeller with Turbo-Ring using real-coded genetic algorithm. In the presented method, Unimodal Normal Distribution Crossover (UNDX) and Minimal Generation Gap (MGG) model are used as crossover operator and generation-alternation model, respectively. Propeller characteristics are evaluated by a simple surface panel method "SQCM" in the optimization process. Blade sections of the original Turbo-Ring and propeller are replaced by the NACA66 a = 0.8 section. However, original chord, skew, rake and maximum blade thickness distributions in the radial direction are unchanged. Pitch and maximum camber distributions in the radial direction are selected as the design variables. Optimization is conducted to maximize the efficiency of the propeller with Turbo-Ring. The experimental result shows that the efficiency of the optimized propeller with Turbo-Ring is higher than that of the original propeller with Turbo-Ring.

DESIGN OPTIMIZATION AND PERFORMANCE ANALYSIS OF INTERNAL COOLING PASSAGE WITH VARIOUS TYPE OF RIB TURBULATOR FOR HIGH PRESSURE TURBINE NOZZLE (전산유체해석을 이용한 다양한 요철 형상에 대한 고압터빈 노즐 냉각유로 최적화 및 냉각 성능 비교)

  • Lee, S.A.;Rhee, D.H.;Kang, Y.S.;Yee, K.J.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.14-19
    • /
    • 2014
  • This study conducts shape optimization of rib turbulator on the internal cooling passage that has triangular cross-section of high pressure turbine nozzle. During optimization, various types of rib turbulator including angled, V-shaped, A-shaped and angled rib with intersecting rib are considered. Each type of rib turbulator is parameterized with attack angle(s), rib height, spacing ratio and bending/intersecting location. For optimization, Design of Experiment (DOE) and Kriging surrogate model are used to utilize computational resource more efficiently and Genetic Algorithm (GA) is used to search the optimum points. As a result, Pareto front of each type of rib turbulator with friction factor that relates to pressure drop in cooling passage and spatially averaged Nusselt number that relates to heat transfer on the wall is drawn and optimum points on the Pareto front are suggested.

Improvement of Topology Algorithm's Convergence Rate Using Chaotic Map (카오틱 맵을 이용한 위상 최적화 알고리즘의 수렴속도 향상)

  • Kim, Yong-Ho;Kim, Gi-Chul;Lee, Jae-Hwan;Jang, Hyo-Jae;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-283
    • /
    • 2014
  • Recently, a topology algorithm based on the artificial bee colony algorithm (ABCA) has been proposed for static and dynamic topology optimization. From the results, the convergence rate of the algorithm was determined to be slightly slow. Therefore, we propose a new search method to improve the convergence rate of the algorithm using a chaotic map. We investigate the effect of the chaotic map on the convergence rate of the algorithm in static and dynamic topology optimization. The chaotic map has been applied to three cases, namely, employ bee search, onlooker bee search, and both employ bee as well as onlooker bee search steps. It is verified that the case in which the logistic function of the chaotic map is applied to both employ bee as well as onlooker bee search steps shows the best dynamic topology optimization, improved by 5.89% compared to ABCA. Therefore, it is expected that the proposed algorithm can effectively be applied to dynamic topology optimization to improve the convergence rate.

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

Development of an Educational Simulator of Particle Swarm Optimization: Application to Economic Dispatch Problems (교육용 PSO 시뮬레이터의 개발: 경제급전에의 적용)

  • Lee, Woo-Nam;Jeong, Yun-Won;Lee, Joo-Won;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.198-200
    • /
    • 2006
  • This paper presents a development of an educational simulator of particle swarm optimization (PSO) and application for solving the test functions and economic dispatch (ED) problems with nonsmooth cost functions. A particle swarm optimization is one of the most powerful methods for solving global optimization problems. It is a population-based search algorithm and searches in parallel using a group of particles similar to other AI-based heuristic optimization techniques. In developed simulator, lecturers and students can select the functions for simulation and set the parameters that have an influence on PSO performance. To improve searching capability for ED problems, a crossover operation is proposed to the position update of each individual (CR-PSO). To verify the feasibility of CR-PSO method, numerical studies have been performed for two different sample systems. The proposed CR-PSO method outperforms other algorithms in solving ED problems.

  • PDF

SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE (위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계)

  • Yang, S.M.;Baek, S.H.;Kang, S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.