• Title/Summary/Keyword: engineering optimization

Search Result 11,050, Processing Time 0.039 seconds

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method (균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.

Crash Optimization of an Automobile Frontal Structure Using Equivalent Static Loads (등가정하중을 이용한 차량 전면구조물 충돌최적설계)

  • Lee, Youngmyung;Ahn, Jin-Seok;Park, Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2015
  • Automobile crash optimization is nonlinear dynamic response structural optimization that uses highly nonlinear crash analysis in the time domain. The equivalent static loads (ESLs) method has been proposed to solve such problems. The ESLs are the static load sets generating the same displacement field as that of nonlinear dynamic analysis. Linear static response structural optimization is employed with the ESLs as multiple loading conditions. Nonlinear dynamic analysis and linear static structural optimization are repeated until the convergence criteria are satisfied. Nonlinear dynamic crash analysis for frontal analysis may not have boundary conditions, but boundary conditions are required in linear static response optimization. This study proposes a method to use the inertia relief method to overcome the mismatch. An optimization problem is formulated for the design of an automobile frontal structure and solved by the proposed method.

Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization (PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화)

  • Roh, Seok-Beom;Wang, Jihong;Kim, Yong-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, optimization technique such as particle swarm optimization was used to optimize the parameters of fuzzy Extreme Learning Machine. While the learning speed of conventional neural networks is very slow, that of Extreme Learning Machine is very fast. Fuzzy Extreme Learning Machine is composed of the Extreme Learning Machine with very fast learning speed and fuzzy logic which can represent the linguistic information of the field experts. The general sigmoid function is used for the activation function of Extreme Learning Machine. However, the activation function of Fuzzy Extreme Learning Machine is the membership function which is defined in the procedure of fuzzy C-Means clustering algorithm. We optimize the parameters of the membership functions by using optimization technique such as Particle Swarm Optimization. In order to validate the classification capability of the proposed classifier, we make several experiments with the various machine learning datas.

A Study on the Shape Optimal Design of Perforated Plate (다공평판의 형상최적화에 관한 연구)

  • 김형준;권영석;박정호;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.731-734
    • /
    • 1997
  • In this study, a shape optimization is performed for circular and elliptical holes to reduce weight of a plate. It is accomplished in reference to the results of topology optimization of the square plate with circular hole. From the results. it is concluded that the stress values of shape optimization of them are satisfied with 100MPa of constraint condition.

  • PDF

Parallel Topology Optimization on Distributed Memory System (분산 메모리 시스템에서의 병렬 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.291-298
    • /
    • 2006
  • A parallelized topology design optimization method is developed on a distributed memory system. The parallelization is based on a domain decomposition method and a boundary communication scheme. For the finite element analysis of structural responses and design sensitivities, the PCG method based on a Krylov iterative scheme is employed. Also a parallelized optimization method of optimality criteria is used to solve large-scale topology optimization problems. Through several numerical examples, the developed method shows efficient and acceptable topology optimization results for the large-scale problems.

  • PDF

Multiphase Dynamic Optimization of Machine Structures Using Genetic Algorithm (유전자 알고리즘을 이용한 공작기계구조물의 다단계 동적 최적화)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1027-1031
    • /
    • 2000
  • In this paper, multiphase dynamic optimization of machine structure is presented. The final goal is to obtain ( i ) light weight, and ( ii ) rigidity statically and dynamically. The entire optimization process is carried out in two steps. In the first step, multiple optimization problem with two objective functions is treated using Pareto genetic algorithm. Two objective functions are weight of the structure, and static compliance. In the second step, maximum receptance is minimized using genetic algorithm. The method is applied to a simplified milling machine.

  • PDF

A Dynamic Programming Approach to PCB Assembly Optimization for Surface Mounters

  • Park, Tae-Hyoung;Kim, Nam
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.192-199
    • /
    • 2007
  • This paper proposes a new printed circuit board (PCB) assembly planning method for multi-head surface mounters. We present an integer programming formulation for the optimization problem, and propose a heuristic method to solve the large NP-complete problem within a reasonable time. A dynamic programming technique is then applied to the feeder arrangement optimization and placement sequence optimization to reduce the overall assembly time. Comparative simulation results are finally presented to verify the usefulness of the proposed method.