• Title/Summary/Keyword: energy-constraints

Search Result 574, Processing Time 0.022 seconds

Recent progress in dark energy research

  • Park, Chan-Gyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.32.1-32.1
    • /
    • 2014
  • Astronomical observations strongly suggest that the expansion rate of our universe is currently under acceleration. The nature of the so-called dark energy causing the acceleration is unknown, and it is one of the fundamental mysteries in the present day theoretical cosmology. Here we briefly review the current state of cosmic dark energy research in both theoretical and observational sides. Constraints on dynamical dark energy models (e.g., w-fluid, quintessence, and modified gravity) with recent observational data from type Ia supernovae, cosmic microwave background radiation, and large-scale structures in the universe indicate a preferred direction toward the simplest ${\Lambda}$CDM world model. We also discuss some issues regarding the early dark energy model and the spherical collapse of matter in the presence of dark energy.

  • PDF

Wireless Energy-Harvesting Cognitive Radio with Feature Detectors

  • Gao, Yan;Chen, Yunfei;Xie, Zhibin;Hu, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4625-4641
    • /
    • 2016
  • The performances of two commonly used feature detectors for wireless energy-harvesting cognitive radio systems are compared with the energy detector under energy causality and collision constraints. The optimal sensing duration is obtained by analyzing the effect of the detection threshold on the average throughput and collision probability. Numerical examples show that the covariance detector has the optimal sensing duration depending on an appropriate choice of the detection threshold, but no optimal sensing duration exists for the ratio of average energy to minimum eigenvalue detector.

Deep Learning the Large Scale Galaxy Distribution

  • Sabiu, Cristiano G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.49.3-49.3
    • /
    • 2020
  • I will give an overview of the recent work in deriving cosmological constraints from deep learning methods applied to the large scale distribution of galaxies. I will specifically highlight the success of convolutional neural networks in linking the morphology of the large scale matter distribution to dark energy parameters and modified gravity scenarios.

  • PDF

A Study on Economic Dispatch Incorporating CO2 Emission Constraints and Emission Trading (CO2 제약조건과 배출권 거래제를 고려한 급전계획)

  • Kim, Yang-Il;Chung Koo-Hyung;Han, Seok-Man;Kim, Bal-Ho, H.
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.40-45
    • /
    • 2007
  • Many countries have been preparing the exercise of UNFCCC (United Nations Framework Convention on Climate Change). If UNFCCC is enforced, considerable changes in generation sector are expected due to the imposed greenhouse gas emission. This paper proposes dispatch scheduling algorithms which incorporate the emission constraints and emission trading. Numerical examples are provided to demonstrate the availability these algorithms.

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Nonthermal Radiation from Supernova Remnant Shocks

  • Kang, Hyesung
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.133-140
    • /
    • 2013
  • Most of high energy cosmic rays (CRs) are thought to be produced by diffusive shock acceleration (DSA) at supernova remnants (SNRs) within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the time-dependent evolution of the self-amplified magnetic fields, Alfv$\acute{e}$nic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and ${\gamma}$-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Energy Aware Scheduling of Aperiodic Real-Time Tasks on Multiprocessor Systems

  • Anne, Naveen;Muthukumar, Venkatesan
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.30-43
    • /
    • 2013
  • Multicore and multiprocessor systems with dynamic voltage scaling architectures are being used as one of the solutions to satisfy the growing needs of high performance applications with low power constraints. An important aspect that has propelled this solution is effective task/application scheduling and mapping algorithms for multiprocessor systems. This work proposes an energy aware, offline, probability-based unified scheduling and mapping algorithm for multiprocessor systems, to minimize the number of processors used, maximize the utilization of the processors, and optimize the energy consumption of the multiprocessor system. The proposed algorithm is implemented, simulated and evaluated with synthetic task graphs, and compared with classical scheduling algorithms for the number of processors required, utilization of processors, and energy consumed by the processors for execution of the application task graphs.

An Adaptive Scheduling Scheme for Cooperative Energy Harvesting Networks

  • Ammar, Ahmed;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.256-264
    • /
    • 2015
  • Energy harvesting devices have been proposed for sensor networking applications where batteries cannot be replaced, and cooperative communication schemes have been used to increase energy efficiency for wireless systems. Here, we develop transmission scheduling schemes for multi-terminal cooperative energy harvesting networks that maximize the packet delivery ratio, i.e., the probability that an event is reported successfully. We see that the proposed scheme provides virtually the same performance as the state-of-the-art threshold-based scheme, but does not require auxiliary parameter optimization. The proposed scheme also permits extensions to multiple cooperating nodes and sources, and it can be modified to accommodate fairness constraints.

Integrated Stability Analysis for Power Systems Using Energy Function (에너지함수에 의한 통합안정도해석)

  • Moon, Young-Hyun;Lee, Eung-Hyuk;Lee, Yoon-Seop;Oh, Yong-Taeg;Kim, Baik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.77-79
    • /
    • 1996
  • This paper presents an integrated stability analysis by the direct energy function method based on Equivalent Mechanical Model(EMM) which reflects the system behavior related to both angle and voltage stabilities. Actually, angle and voltage stability are intimately related in power system, so complete decoupling of these stability analysis is not possible in general, particularly in stressed power systems. In this paper, it is shown that a identical energy function can be used for angle and voltage stability analysis. The proposed energy function reflects the line resistances and reactive powers under the constraints of the same R/X ratio. The energy margin between UEP and SEP presents a good collapse proximity index in both types of stability analysis.

  • PDF