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Abstract 
 

The performances of two commonly used feature detectors for wireless energy-harvesting 
cognitive radio systems are compared with the energy detector under energy causality and 
collision constraints. The optimal sensing duration is obtained by analyzing the effect of the 
detection threshold on the average throughput and collision probability. Numerical examples 
show that the covariance detector has the optimal sensing duration depending on an 
appropriate choice of the detection threshold, but no optimal sensing duration exists for the 
ratio of average energy to minimum eigenvalue detector. 
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1. Introduction 

Energy-harvesting is a promising solution to green communications [1], [2]. For example, it 
can be used in future networks by harvesting energy from both ambient sources or licensed 
users [3]. It can be used to harvest energy along with interference alignment [4], [5]. It can also 
be used to provide energy for cognitive relaying [6]. Recently, much research work has 
focused on energy-harvesting in cognitive radio networks(CRNs) harvesting from ambient 
sources only [7]-[10]. In particular, researchers have studied the effects of different sensing 
parameters, such as sensing duration, sensing threshold and transmit power on the system 
performance. In [7] and their other works, the spectrum sensing policy and the detection 
threshold for an energy harvesting CR were jointly designed under the energy causality and 
collision constraints to maximize the expected total throughput. In [8], the optimal transmit 
power was studied jointly with the sensing duration and sensing threshold to maximize the 
average throughput. In [9], optimal and myopic sensing strategies are studied based on the 
proposed channel selection criterion under energy neutrality constraint and fading channel 
conditions. In [10], optimal sensing and access policies are analyzed in energyharvesting CR 
for a single-user single-channel setting in the presence of sensing errors. However, all the 
aforementioned works have studied energy detector only. 

 
Energy detection is known for its simplicity but also for its poor performance due to 

various factors, such as noise uncertainty [11]. Consequently, feature detection is commonly 
used for spectrum sensing. In [12], a maximum eigenvalue (ME)  detector based on the 
statistical covariance of the received signal was shown to have a better performance than the 
energy detector for correlated signals. In [13], the ratio of maximum to minimum 
eigenvalue(MME) and the ratio of average energy to minimum eigenvalue (EME) detector 
were proposed. In [14], a covariance(COV) detector was proposed to outperform the energy  
detector. In [15], the four feature detectors discussed above were compared with primary user 
traffic during the sensing period. All these feature detectors provide useful alternatives to the 
energy detector. However, their use in energy-harvesting cognitive radio systems has not been 
studied yet.  

 
In this paper, we investigate the use of feature detectors in energy-harvesting cognitive 

radio systems harvesting from ambient sources only and compare their performances with that 
using energy detection. Due to different detection variables and detection thresholds used in 
feature detection and energy detection, the effects of some sensing parameters, as studied in 
[7]-[10], will be added or removed. Numerical results give insights into the effect of the 
different sensing thresholds on the system performance and how to design the sensing duration 
for a given detection threshold in an energy-harvesting CRN. A list of important variables and 
symbols in this paper are presented in Table 1 for readers’ convenience. 

 
Table 1. List of important variables and symbols used in the paper. 

COV Covariance detector 
EG Energy detector 

EME Average-energy-to-minimum-eigenvalue detector 
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ST Secondary transmitter 

ta  Spectrum access mode 

tE  Residual energy at time t 
c
tE  Consumed energy at time t 
h
tE  Harvested energy at time t 

he  Average harvested energy 

se  Sensing energy 

te  Transmitting energy 

sf  Sampling frequency 

sp  Sensing power 

tp  Transmission power 

DP  Detection probability 

FAP  False alarm probability 

aP  Active probability 

vP  Availability probability 

cP  Collision probability 

R  Average throughput 

uR  Average throughput of energy unconstrained CR 

pSNR  Signal-to-noise ratio of primary user 

sSNR  Signal-to-noise ratio of secondary user 

T  Time slot length 

tθ  Sensing decision or result 
γ  Detection threshold 

sτ  Sensing duration 

cτ  Minimum feasible sensing duration 

eτ  Minimum energy equilibrium sensing duration 

pτ  Optimal sensing duration 

0π , 1π  Idle and occupancy probabilities 
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2. System Model 
Consider a CRN model comprising of a primary user and an energy-harvesting secondary 

network. The primary user is licensed to utilize the spectrum, while the secondary network 
opportunistically accesses the primary user’s spectrum.Assume that there is no fixed energy 
supply for the secondary users, such that it collects energy from ambient sources(e.g., solar, 
wind, vibration, ambient radio frequency) for spectrum sensing and data transmission.  

2.1 Energy Model and Spectrum Access Decision 
   The energy-harvesting secondary transmitter(ST) will be either active or inactive, 

depending on the residual energy tE  at the beginning of slot t . Suppose that the duration of 
each slot T  is divided into a sensing time of sτ  and a data transmission time of sT τ− . 
Assume the ST always has data to transmit. Define /s Tτ  as the normalized sensing duration, 
which is the ratio of the sensing duration to the total slot duration. Denote 0h

tE > as the 
harvested energy at slot t , which is assumed to be an independent and identically distributed 
random process with mean { }h

t hE E e= . The required energy per slot for spectrum sensing and 
data transmission are s s se p τ= and ( )t t se p T τ= − , respectively, where 0sp >  is the sensing 
power and 0tp >  is the transmission power. If the residual energy tE  is greater than or equal 
to s te e+ , the ST performs spectrum sensing and data transmission during slot t . Otherwise, 
it will not be active. Denote { }0( ),1( )ta inactive active= as the spectrum access mode, a decision 
made by ST as  

1,
0,

t s t
t

t s t

E e e
a

E e e
≥ +

=  < +
.                                   (1) 

     
 When 0ta = (ST is in the inactive mode), the ST takes no action and turns off itself until the 
next slot arrives. When 1ta = (ST is in the active mode), the ST carries out spectrum sensing 
with se energy consumption. Based on the sensing result { }0( ),1( )t idle occupiedθ = , the ST 
decides whether it will transmit data or not. When 0tθ = (the spectrum is idle), the ST 
consumes te for data transmission. Otherwise, when 1tθ = (the spectrum is occupied), the ST 
does not take any action. The total consumed energy of ST in a slot t is 

( (1 ) )c
t t s t tE a e eθ= + − and the residual energy at the beginning of the next slot 
1t + is 1

c h
t t t tE E E E+ = − + . 

 

2.2 Spectrum Sensing  
The ST carries out spectrum sensing in the active mode. The probabilities of an idle or 

occupied band are denoted by 0π  and 1π , respectively, with 0 1 1π π+ = . The binary hypothesis 
test for spectrum sensing is   

0

1

: ( ) ( )
: ( ) ( ) ( )

t t

t t t

H y m w m
H y m s m w m

=

= +
 .                   (2) 

 
where ( )ty m is the m -th sample of the received signal in slot t , ( )ts m and ( )tw m are the 
primary user signal and noise, respectively, assumed to be real-valued zero-mean Gaussian 
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random variables with variances 2
pσ  and 2

wσ , respectively. Denote sf  as the sampling 
frequency. Then, the number of samples is s sN fτ= . The ST detects the presence of the 
primary signal using different detectors. Their probabilities of false alarm and detection under 
two hypotheses are discussed as follows.   
 

For energy detector (EG), the probability of false alarm EG
FAP and the probability of 

detection EG
DP  were derived as  

EG
EG EG( , ) ( 1)

2
s s

FA s
f

P Q
τ

τ γ γ
 

≈ −  
 

                        (3). 

EG EG
EG( , ) ( 1)

1 2
s s

D s
p

f
P Q

SNR
γ τ

τ γ
 

≈ −  + 
              (4) 

 
respectively, where EGγ  is the detection threshold, 2 2/p p wSNR σ σ=  is the received signal-to-noise 

ratio(SNR) of the primary user, 2 /21( )
2

u

x
Q x e du

π

+∞ −= ∫ is the Gaussian Q function. 

 
For the EME detector, the probability of false alarm EME

FAP and the probability of 
detection EME

DP  are given by  
2

EMEEME
EME

( )
( , )

2
s s s s

FA s
s s

f L f
P Q

f
γ τ τ

τ γ
τ

 − −
≈   

 
                 (5)                          

2
2

EME min

EME

2
EME

( )

(

( )

2
, )

w r s
s s w

s s
D

s s

s

w

T Rf L
Lf

P Q

f

σ
γ r τ σ

τ
τ

σ
γ

τ

  
 + − − −    ≈  
 
 
 

    (6) 

respectively, where EMEγ  is the detection threshold, L is the smoothing factor, sR


is the 
covariance matrix of ( )s m , minr is the minimum eigenvalues of sR



and ( )r sT R is the trace of 

sR


. 
 

  For the COV detector, the probability of false alarm COV
FAP and the probability of detection 

COV
DP  are given by  

C
CO

OV
VCOV

1 21 ( 1
)

) 1
1

2
( ,

)
s

s
s

FA

s s

L
f

P Q

f

τ γ
γ τ π

τ

  
+ − −     ≈ −  

 
 
 

                (7) 

2

2 2
COV COVC

COV
OV

1 1
( )

1
2

( , )

L p

p
s

w
D

s s

P Q

f

γ σ
γ γ σ σ

τ

τ γ

 
+ − 

+ ≈ −  
 
 
 

                        (8) 

respectively, where COVγ  is the detection threshold and [ ]
1

2

0
(2 / ) ( ) ( ) ( ) /

L

L p
l

L L l E s m s m lγ σ
−

=

= − −∑ . 

Next, we derive the performances of energy harvesting CRNs using these detectors. 
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3. Performance Comparison 
The aim of the ST is to transmit data successfully under the energy causality constraint, 

while the probability of collision should be below a target probability to guarantee the QoS of 
primary user. From the discussion above, it is shown that the sensing duration depends on the 
spectrum access mode decision and spectrum sensing performance. Thus, its effect on system 
performance needs to be investigated further. 

 

3.1 Active Probability 
Consider the fact that the active probability is limited by the energy causality constraint. 

Thus, the harvested energy should be no less than the consumed energy. Otherwise, the 
average throughput will be degraded when ST enters into the inactive mode.   

 
The active probability for EG can be derived as 

EG
EG EG EG( , , ) min(1, ( , , ))a s h s hP e eτ γ λ τ γ=                               (9) 

EG EG
EG EG

EG EG
0 1

( , , )
( ){(1 ) (1( , ) }( , ))F

h
s h

s s At s s D s

e
e

p p T P P
λ τ γ

τ τ γ τπ πγτ
=

+ − − + −
   (10) 

being the ratio of the average harvested energy to the average energy consumption. 
 

We can see that the harvested energy is independent of sτ  while the consumed energy 
depends on sτ . Thus, for a given he , according to EG EG( , , )s heλ τ γ , there exists three operating 
regions of ST as follows:  

 
a) The system operates in energy-surplus region: EG EG( , , ) 1s heλ τ γ > . The set of sensing 

durations in this region is }{ EG EG( , , ) 1s s hT eτ λ τ γ= > . 
 

b) The system operates in the energy-equilibrium region: EG EG( , , ) 1s heλ τ γ = . The set of 
sensing durations in this region is }{ EG EG( , , ) 1e s hT eτ λ τ γ= = . 

 
c) The system operates in the energy-deficit region: EG EG( , , ) 1s heλ τ γ < . The set of 

sensing durations in this region is }{ EG EG( , , ) 1d s hT eτ λ τ γ= < .  
 
     When EG EG( , , ) 1s heλ τ γ > , the average harvested energy is greater than consumed energy, 

EG
EG( , , ) 1a s hP eτ γ = . This means that the system always executes opportunistic spectrum access, 

since it has enough energy for spectrum access. On the other hand, when EG EG( , , ) 1s heλ τ γ < , 
EG

EG EG EG( , , ) ( , , )a s h s hP e eτ γ λ τ γ= , which means the ST should stay in the inactive mode and suffers 
from energy shortage for most time slots. When EG EG( , , ) 1s heλ τ γ = , the ST is consuming as 
much energy as what it has harvested on average, so it remains in active mode all the time. For 
the EME and COV detectors, there are also three operating regions of ST with similar 
characteristics as EG by replacing the subscript ‘EG’ with ‘EME’ and ‘COV’, respectively, in 
the EG EG( , , )s heλ τ γ . 
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3.2 Availability and Collision Probability 
Compared with energy-unconstrained CRN, the performances of the energy-harvesting CR 

system are affected by the energy causality constraint and spectrum sensing performance. This 
means that we have to define new performance metrics, namely, the availability probability 
and the collision probability. 

 
The probability that the ST accesses the idle spectrum and can transmit data without 

interference is called the availability probability. The probability that the ST accesses the 
occupied spectrum and its signal will be colliding with the primary signal is called the 
collision probability. 

 
For EG, the availability probability can be expressed as 

EG EG EG
EG EG EG( , , ) ( , , )(1 ( , ))v s h a s h FA sP e P e Pτ γ τ γ τ γ= −    (11) 

 
Also, the collision probability for EG is given by  

EG EG EG
EG EG EG( , , ) ( , , )(1 ( , ))c s h a s h D sP e P e Pτ γ τ γ τ γ= −      (12) 

 
     Using similar methods, one can have these probabilities for the EME and COV detectors as 

EME
EME EME EME( , , ) min(1, ( , , ))a s h s hP e eτ γ λ τ γ=               (13) 

 
where 

EME EME
EME E

EME EME
0 M 1E

( , , )
( ){(1 ) (1( , ) ( , ) })FA s D

h
s h

s s t s s

e
e

p T Pp Pτ γ τ γ
λ τ γ

τ τ π π
=

+ − − + −
   (14)   

 
      EME EME EME

EME EME EME( , , ) ( , , )(1 ( , ))v s h a s h FA sP e P e Pτ γ τ γ τ γ= −       (15) 
 

     EME EME EME
EME EME EME( , , ) ( , , )(1 ( , ))c s h a s h D sP e P e Pτ γ τ γ τ γ= −        (16) 

 
   COV

COV COV COV( , , ) min(1, ( , , ))a s h s hP e eτ γ λ τ γ=                          (17) 
 
where 

   
COV COV

COV C
COV COV

0 O 1V

( , , )
( ){(1 ) (1( , ) ( , ) })FA s D

h
s h

s s t s s

e
e

p T Pp Pτ γ τ γ
λ τ γ

τ τ π π
=

+ − − + −
 (18)                                                                                              

 
  COV COV COV

COV COV COV( , , ) ( , , )(1 ( , ))v s h a s h FA sP e P e Pτ γ τ γ τ γ= −        (19) 
 

 COV COV COV
COV COV COV( , , ) ( , , )(1 ( , ))c s h a s h D sP e P e Pτ γ τ γ τ γ= − .       (20) 

 

3.3 Average throughput  
In the energy-harvesting CR system, the average throughput for EG can be expressed as 

           EG EG
EG EG EG EG( , , ) ( , , ) ( , )s h a s h u sR e P e Rτ γ τ γ τ γ=                   (21) 

 

         EG EG EG
EG EG 0 EG 1 0( , ) ((1 ( , )) (1 ( , )) )

FA D

s
u s s s

T
R P P C

T
τ

τ γ τ γ π τ γ π
−

= − + −    (22) 
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refers to the average throughput of an energy-unconstrained CRN, 0 log(1 )sC SNR= +  and sSNR  
indicates the secondary SNR.  
 
     For the EME and COV detectors, their average throughputs can be obtained by using the 
similar methods as  

    EME EME
EME EME EME EME( , , ) ( , , ) ( , )s h a s h u sR e P e Rτ γ τ γ τ γ=                     (23) 

 
        EME EME EME

EME EME 0 EME 1 0( , ) ((1 ( , )) (1 ( , )) )
FA D

s
u s s s

T
R P P C

T
τ

τ γ τ γ π τ γ π
−

= − + −     (24) 

 
    COV COV

COV COV COV COV( , , ) ( , , ) ( , )s h a s h u sR e P e Rτ γ τ γ τ γ=                      (25) 
 

       COV COV COV
COV COV 0 COV 1 0( , ) ((1 ( , )) (1 ( , )) )

FA D

s
u s s s

T
R P P C

T
τ

τ γ τ γ π τ γ π
−

= − + − .   (26) 

4. Optimal sensing duration policy 
In order to maximize the average throughput of energy harvesting CR system, the optimal 

sensing duration needs to be designed under energy causality constraint and the collision 
constraint simultaneously. The derivation can be obtained following the method in [7] – [10] 
and therefore is not presented here to focus on the discussion instead. 

 

4.1 Minimum Feasible Sensing Duration under Collision Constraint 
The minimum feasible sensing duration, denoted as EG

EG( , )c heτ γ  for EG, is the minimum 
boundary element of a feasible set that satisfies the equality of the collision constraint and can 
be given by  

        
}{

}{ }{

EG
EG

EG EG
EG EG

1
EG

0, max ( , , )

( , ) , min ( , , )

( , , ),

s

s

c c s h

c h c c s h

c c h

P P e

e P P e

P P e otherwise

τ

τ

τ γ

τ γ φ τ γ

γ−

 >

= <




   (27) 

 
where 1

EG( , , )c hP eγ− ⋅  is the inverse of EG( , , )c hP eγ⋅  and cP  is the target collision probability. 
 

For the EME and COV detectors, their definitions can be obtained by  

    
}{

}{ }{

EME
EME

EME EME
EME EME

1
EME

0, max ( , , )

( , ) , min ( , , )

( , , ),

s

s

c c s h

c h c c s h

c c h

P P e

e P P e

P P e otherwise

τ

τ

τ γ

τ γ φ τ γ

γ−

 >

= <




   (28) 

 
where 1

EME( , , )c hP eγ− ⋅  is the inverse of EME( , , )c hP eγ⋅  and cP  is the target collision probability. 
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}{
}{ }{

COV
COV

COV COV
COV COV

1
COV

0, max ( , , )

( , ) , min ( , , )

( , , ),

s

s

c c s h

c h c c s h

c c h

P P e

e P P e

P P e otherwise

τ

τ

τ γ

τ γ φ τ γ

γ−

 >

= <




 (29) 

 
where 1

COV( , , )c hP eγ− ⋅  is the inverse of COV( , , )c hP eγ⋅  and cP  is the target collision probability. 

 

4.2 Minimum Energy-Equilibrium Sensing Duration under Energy Causality 
Constraint 

It is worth noting that the average throughput is degrading with the sensing duration in 
energy-deficit region. So the sensing duration should be adjusted to the energy-equilibrium 
region in order to avoid performance degradation. The minimum energy equilibrium sensing 
duration, denoted as EG

EG( , )e heτ γ for EG, is the minimum element of the energy-equilibrium set 
larger than or equal to EG

EG( , )c heτ γ . It is derived as  

 }{ 1 EG
EG EG EG

EG 1
EG EG EG(1, , ) ( , )

( , ) min 1 (1, , )
h c h

e h he e
e e

λ γ τ γ
τ γ λ γ−

−

>

 = 


                (30) 

 
where 1

EG EG( , , )heλ γ− ⋅  is the inverse of EG EG( , , )heλ γ⋅  and EG
EG( , )c heτ γ  is denoted in (27). 

 
     For the EME and COV detectors, their definitions can be derived by  

}{ 1 EME
EME EME EME

EME 1
EME EME EME(1, , ) ( , )

( , ) min 1 (1, , )
h c h

e h he e
e e

λ γ τ γ
τ γ λ γ−

−

>

 = 


       (31) 

 
where 1

EME EME( , , )heλ γ− ⋅  is the inverse of EME EME( , , )heλ γ⋅  and EME
EME( , )c heτ γ  is denoted in (28). 

 

}{ 1 COV
COV COV COV

COV 1
COV COV COV(1, , ) ( , )

( , ) min 1 (1, , )
h c h

e h he e
e e

λ γ τ γ
τ γ λ γ−

−

>

 = 


           (32) 

 
where 1

COV COV( , , )heλ γ− ⋅  is the inverse of COV COV( , , )heλ γ⋅  and COV
COV( , )c heτ γ  is denoted in (29). 

 

4.3 Solution to Optimization Problem for Throughput Maximization 
Combining the discussions in parts 4.1 and 4.2, the candidate for the solution of sensing 

duration for EG is EG EG
EG EG( , ) ( , )c h s e he eτ γ τ τ γ≤ ≤ . If this solution belongs to dT , the optimal 

duration is set to EG
EG( , )c heτ γ  so that the average throughput will not decrease. Otherwise, the 

sensing-throughput tradeoff should be considered jointly. In fact, there exists a maximum 
point EG

EG( , )m heτ γ of EG
EG( , )u sR τ γ  from the tradeoff. This EG

EG( , )m heτ γ  does not vary with he  
and satisfies the sensing duration that maximizes EG

EG( , )u sR τ γ in energy-unconstrained CRN, 

i.e., 
EG

EG( , )
0u s

s

R τ γ
τ

∂
=

∂
. Consequently, the optimal sensing duration is determined by comparing 

three candidates, EG
EG( , )c heτ γ , EG

EG( , )m heτ γ  and EG
EG( , )e heτ γ to achieve the average throughput 



4634                                                                           Gao et al.: Wireless Energy-Harvesting Cognitive Radio with Feature Detectors 

maximization. 
 
Thus, for a given sensing threshold, the general expression of optimal sensing duration 

EG
EG ( , )p heτ γ  for EG can be derived as 

 

{ }EG E
EG E

G
G EG

EG

EG
EG

( , ), ( , ), (
E EG

)
G

,

( , ) arg max ( , , )
c h m h e h

p h s h
e e e

e R e
τ τ τ τγ γ γ

γτγτ
∈

=        (33) 

 
The optimal sensing durations for EME and COV detectors are found in a similar way by 

replacing “EG” in (33) with “EME” and “COV”, respectively. They are not repeated here to 
save space. Their optimal solutions will be discussed in the next section.  

5. Numerical results and discussion 
In this section, the performances of the feature detectors are compared with the energy 

detector for energy-harvesting CRN. The system parameters used in the comparison are 
summarized in Table 2. The smoothing factor is chosen to 8 as in [15]. It was shown in the 
feature detection literature that a larger L  gives better performance but more complicated 
detector. Furthermore, since the COV and EME detectors cannot have the sensing duration as 
0, we set sτ  to [T1,T], where T1=0.001 is non-zero in our simulation. 

 

 
Figs. 1 and 2 compare the average energy consumption versus the normalized sensing 

duration for the EG and COV detectors with different detection thresholds. Fig. 1 indicates the 
average energy consumption for EG when EG 1.005 ~ 1.01γ =  from the bottom to the top, and 
Fig. 2 shows for COV when COV 1.02 ~ 1.025γ =  from the bottom to the top.  

 

Table 2. SIMULATION PARAMETERS 

Symbol Description Value 

sp  Sensing power 110mW 
tp  Transmit power  410mW 
0π  Probability of being 

idle  
0.8 

2
wσ  Noise power 1 

SNRr Primary signal SNR -15dB 
SNRS Secondary SNR 20dB 
fs Sampling frequency 1MHz 
T Slot duration 0.1s 

cP  Target collision 
probability 0.1 

L Smoothing factor 8 
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Fig. 1. Average energy consumption versus the normalized sensing duration for energy detector with 

various detection thresholds. 
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Fig. 2. Average energy consumption versus the normalized sensing duration for COV detector with 

various detection thresholds. 
 
It is shown that more energy is consumed as the detection threshold increases from the 

bottom to the top. One can see that the energy consumption increases when the sensing 
duration increases for both detectors. However, if the sensing duration increases further, the 
consumed energy will be reduced. When sτ  is set to the smallest value as 0.001, only nearly 
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0.002J energy is consumed for COV when COV 1.02γ = , whereas much more energy as 0.02J 
needs to be consumed for EG when EG 1.005γ = . When sτ  reaches the maximum duration, the 
same energy consumption is 0.011sp T = J for both detectors. One also sees that the COV 
detector has a longer sensing duration than the EG detector when it reaches the maximum 
energy consumption, as the COV detector needs more samples due to its complexity. On the 
other hand, the maximum energy consumption of the COV detector is smaller than that of the 
energy detector. For example, when the threshold is 1.025, the maximum energy consumption 
for the COV detector is about 0.015J with the sensing duration 0.066s sτ = , while when the 
threshold is 1.01, the maximum energy consumption for the EG is around 0.025J with the 
sensing duration 0.018s sτ = . For the same reasons, the consumed energy for the EME detector 
has a similar trend to that of the COV detector, namely, the energy consumption increases with 
the sensing duration and then decreases. The maximum energy consumption for EME is about 
0.018J when 0.062s sτ = . This figure is not shown here for the compactness of the paper. 

 
     In addition to the sensing duration, the sensing threshold is also another important 
parameter that will affect the performance of energy-harvesting CRN. In order to observe the 
effect of different sensing thresholds on the energy causality constraint, collision constraint 
and their tradeoff separately for the three detectors, and therefore to find the optimal sensing 
duration under different conditions, three exclusive subsets of sensing thresholds are used 
based on the signal power and noise power. Consequently, the following examples illustrate 
the relationships between the sensing duration and the system performance corresponding to 
the sensing threshold.  
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Fig. 3. Average throughput versus the normalized sensing duration when 

20 wγ σ≤ < . 
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Fig. 4. Collision probability versus the normalized sensing duration when 

20 wγ σ≤ < . 
 

Figs. 3 and 4 compare the average throughput and collision probability versus the 
normalized sensing duration for different detectors when the sensing threshold 20 wγ σ≤ < . 
Different harvested energy is also considered with respect to the same sensing threshold for 
any detector. In this case, as the sensing duration increases, the average throughput and 
collision probability are both small and monotonically decrease. Thus, there is no optimal 
sensing duration for the three detectors.  
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Fig. 5. Average throughput versus the normalized sensing duration when 

2 2 2
w w pσ γ σ σ≤ < + . 
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Fig. 6. Collision probability versus the normalized sensing duration when 

2 2 2
w w pσ γ σ σ≤ < + . 

 
 

Figs. 5 and 6 illustrate the average throughput and the collision probability for different 
detectors when the sensing threshold 2 2 2

w w pσ γ σ σ≤ < + . One can see that the average 
throughput and the collision probability decrease when the harvested energy decreases. Also, 
both the EG and COV detectors have a non-zero value of mτ  that maximizes the average 
throughput. For the same average harvested energy, a value of cτ  can be found to satisfy the 
collision constraint for the COV detector and the EG detector, but not for the EME detector 
due to its small collision probability. Furthermore, if the target collision probability cP is set to 
0.1, when the average harvested energy decreases to the same value of 0.018J, EG

eτ  is smaller 
than EG

cτ  for the EG detector, and  COV
eτ  is larger than COV

cτ for the COV detector. Consequently, 
in order to satisfy the collision constraint, the optimal sensing duration is designed to EG

cτ  for 
the EG detector and COV

eτ for the COV detector, which indicates that the range of 
energy-equilibrium region is shorter for the EG detector than the COV detector for a given 
average harvested energy.  

 
Figs. 7 and 8 show the average throughput and the collision probability versus the 

normalized sensing duration for different detectors when the sensing threshold 2 2
w pγ σ σ> + . In 

this case, all three detectors can achieve the maximum throughput with a non-zero mτ . 
Compared with the EG detector, both the COV and the EME detectors have larger 
energy-equilibrium duration. As for the collision probability, it increases as the normalized 
sensing duration increases for all three detectors. This is because when the sensing threshold is 
greater than the primary signal power, so the ST considers the spectrum as being idle when it is 
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actually being occupied. Thus, this condition is not considered to be reasonable for practical 
use. This figure identifies this unreasonable condition and therefore is useful. 
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Fig. 7. Average throughput versus the normalized sensing duration when 

2 2
w pγ σ σ> + . 
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Fig. 8. Collision probability versus the normalized sensing duration when 

2 2
w pγ σ σ> + . 
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The above discussions analyze how the value of γ  will affect the throughput 
performances of different detectors and compare their performances for the same value of γ . 
Using these discussions, one can also design the detectors by choosing the value of γ  
according to the following rules. From Figs. 1 and 2, the threshold needs to be as large as 
possible to achieve larger throughput. However, when the threshold is too large, such as in 
Figs. 7 and 8, the condition becomes unreasonable. Thus, it is preferable to choose a value of 
threshold in the condition of Figs. 5 and 6 for a practical system. 

6. Conclusion 
Two feature-based detectors have been examined and compared with the energy detector 

for energy harvesting CRN. Numerical examples show that the optimal sensing duration can 
be derived only for an appropriate sensing threshold. Compared with energy detector, there is 
no optimal sensing duration for the EME detector due to its poor sensing performance. 
However, for a reasonable sensing threshold, considering the COV detector usually 
outperforms the energy detector, the range of energy-equilibrium region is longer than the EG 
detector for a given average harvested energy. 
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