• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.032 seconds

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

A Case Study of Test Production of Gas from Hydrate Bearing Sediments on Nankai Trough in Japan (일본 난카이 해구 가스하이드레이트 퇴적층으로부터의 가스 시험생산 사례분석)

  • Kim, A-Ram;Lee, Jong-Won;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Gas hydrate is a solid substance composed of natural gas constrained in water molecules under low temperature and high pressure conditions. The existence of hydrates has been reported to be world-widely distributed, mainly at permafrost and deep ocean floor. Test productions of small amount of natural gas from the on-shore permafrost have been accomplished in U.S.A and Canada, but, world-first and the only production case from off-shore hydrate bearing sediments was in Nankai trough, Japan. In this study, we introduce key technologies in gas production from hydrates by analyzing the Japanese off-shore gas production project in Nankai trough in terms of depressurization- induced dissociation so as to utilize planned domestic gas production test in Ulleung basin.

A Study on the Quantification of Assessment Category of Roughness of Discontinuity of Rock Mass Classification Using Delphi method (델파이방법을 이용한 암반분류법의 불연속면 거칠기 평가분류 정량화에 관한 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.210-219
    • /
    • 2015
  • This paper describes a new quantitative process for evaluating the roughness of discontinuity, which is suggested as a qualitative criteria in RMR or Q-system. For this purpose, the Delphi method which is one of the surveying methods was introduced. The selected panels were asked to evaluate the roughness of discontinuities on the Web which was hosted by authors in advance. A total of 3 surveys were performed using JRCs suggested by Barton and Choubey as well as Ai generated by the Monte Carlo simulations. After each survey, the results were provided to all panels for comparing their decisions to others. As surveys proceeded, better consensus and convergence were achieved. With a good agreement of panels on roughness classification, the quantitative criteria for roughness of discontinuity in RMR and Q-system was established in this study.

Development and Utilization of Mine Management Software: A Review (광산관리 소프트웨어의 개발 현황 및 활용사례 분석)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.221-230
    • /
    • 2015
  • This study examined and analyzed several mine management software programs developed in domestic and oversea countries. In the oversea countries, many companies have developed and commercialized mine management softwares such as Dispatch, $Cat^{(R)}$ $MineStar^{TM}$ and FARA. These softwares provide many functionalities including real-time machine tracking, machine assignment optimization, productivity management, equipment health monitoring and remote control. For the domestic cases, this study reviewed two software programs (i.e., GEMISIMS, Truck-Shovel fleet optimization) developed by several researchers because there is no mine management software currently commercialized in Korea. In addition, this paper reports the two cases at the Jwaneng mine in Botswana and at the Robinson mine in United States where mine management software programs are used to support mine operations.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

GRAM Model Analysis of Groundwater Rebound in Abandoned Coal Mines (GRAM 모델을 이용한 폐탄광 지역 지하수 리바운드 현상 분석)

  • Choi, Yosoon;Baek, Hwanjo;Cheong, Young-Wook;Shin, Seung-Han;Kim, Gyoung-Man;Kim, Dae-Hoon
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.373-382
    • /
    • 2012
  • Cessation of dewatering usually results in groundwater rebound after closing an underground coal mine because the mine voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from groundwater rebound. This study reviews the numerical models such as VSS-NET, GRAM and MODFLOW, and compares their scopes of assessment at different spatial and time scales. In particular, the GRAM model was reviewed in details to implement it. This paper describes the implementation of GRAM model and its application to the Dongwon coal mine in Korea. The application showed that the groundwater level modeled at the shaft of Dongwon coal mine using the GRAM model is similar to the observed one in the field.

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.

Comparisons of Brittleness Indices of Shale and Correlation Analysis for the Application of Hydraulic Fracturing (수압파쇄 적용을 위한 셰일의 취성의 개념 고찰 및 취성도 간의 상관관계 분석)

  • Park, Jung-Ah;Park, Bona;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.325-333
    • /
    • 2014
  • Hydraulic fracturing is the key technology for production of shale gas, which is one of the major unconventional resources. Brittleness index is one of the most important mechanical properties which determine the efficiency of hydraulic fracturing. It was required that the production of shale gas increases with more brittle behavior. Confusingly, there are numerous definitions available for brittleness of rock. This paper summarizes various definitions of brittleness index, and presents correlation analysis of the brittleness indices by using the laboratory experimental results of 48 shale specimens in Korea. Generally, it shows a very weak positive correlation between the brittleness index ($B_1$) which is the ratio of uniaxial compressive strength to tensile strength and the brittleness index ($B_3$) which is calculated by using the Youngs modulus and Poisson's ratio. In addition, the role of Poissons ratio is not clear in defining brittleness indices. In conclusion, standardization of definition for brittleness index is required to apply it to hydraulic fracturing as a parameter for predicting the efficiency.

Study on Hydraulic Fracturing in Transverse Isotropic Rock Using Bonded Particle Model (입자결합모델을 이용한 횡등방성 암석에서의 수압파쇄 특성 연구)

  • Jung, Jaewoong;Heo, Chan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.470-479
    • /
    • 2013
  • Hydraulic fracturing is used as a method for promoting the fluid flow in the rock and, in the energy field such as geothermal development and the development of sales gas, many studies has been actively conducted. In many cases, hydraulic fracturing is not performed in isotropic rock and especially in the case of sedimentary rocks, hydraulic fracturing is conducted in the transverse isotropic rock. The direction of the crack growth on hydraulic fracturing does not necessarily coincides with the direction of maximum principal stress in the transverse isotropic rock. Therefore, in this study, bonded particle model with hydro-mechanical coupling analysis was adopted for analyzing the characteristics of hydraulic fracturing in transverse isotropic rock. In addition, experiments of hydraulic fracturing were conducted in laboratory-scale to verify the validity of numerical analysis. In this study, the crack growth and crack patterns showed significant differences depending on the viscosity of injection fluid, the angle of bedding plane and the influence of anisotropy. In the case of transverse isotropic model, the shear crack growth due to hydraulic fracturing appeared prominently.

Rock Fragmentation Assessment of a Drill Bit by Hopkinson Bar Percussion Test (홉킨스바 타격시험을 통한 드릴비트의 암반파쇄 분석)

  • Kwon, Ki-Beom;Song, Chang-Heon;Park, Jin-Young;Shin, Dae-Young;Cho, Jung-Woo;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2013
  • The percussion rate and spacing of the button of drill bit are very important in maximizing the drilling efficiency. Therefore, a series of percussion tests using Hopkinson bar system was carried out to assess the fragmentation performance against the beat rate and spacing of a drill bit. First, single percussion test complemented with numerical simulation was performed to analyze rock fragmentation phenomenon and to describe the fragmentation process. Next, multiple percussion test that repetitively strike the rock sample moving at predetermined rate was carried out to predict drilling efficiency against the button spacing. After the tests, the fragmented volume of the rock was measured by laser scanner and the drilling performance was analyzed using the calculated percussive energy and measured negative volume. Based on the results, the single impact performance of drill bit with 102 mm diameter was predicted.