DOI QR코드

DOI QR Code

GRAM Model Analysis of Groundwater Rebound in Abandoned Coal Mines

GRAM 모델을 이용한 폐탄광 지역 지하수 리바운드 현상 분석

  • 최요순 (부경대학교 환경해양대학 에너지자원공학과) ;
  • 백환조 (강원원대학교 공과대학 에너지.자원공학과) ;
  • 정영욱 (한국지질자원연구원 지질재해연구실) ;
  • 신승한 (한국광해관리공단 광해기술연구소 수질환경연구팀) ;
  • 김경만 (강원원대학교 공과대학 에너지.자원공학과) ;
  • 김대훈 (강원원대학교 공과대학 에너지.자원공학과)
  • Received : 2012.11.26
  • Accepted : 2012.12.12
  • Published : 2012.12.31

Abstract

Cessation of dewatering usually results in groundwater rebound after closing an underground coal mine because the mine voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from groundwater rebound. This study reviews the numerical models such as VSS-NET, GRAM and MODFLOW, and compares their scopes of assessment at different spatial and time scales. In particular, the GRAM model was reviewed in details to implement it. This paper describes the implementation of GRAM model and its application to the Dongwon coal mine in Korea. The application showed that the groundwater level modeled at the shaft of Dongwon coal mine using the GRAM model is similar to the observed one in the field.

폐광된 광산에서는 채광장으로 유입되는 지하수의 펌핑 작업을 더 이상 수행하지 않기 때문에, 채광 공동이나 채광장 주변 지층에서 지하수위가 점진적으로 상승하는 지하수 리바운드 현상이 발생한다. 그동안 폐광산 지역의 지하수 리바운드 현상을 분석할 수 있는 다양한 수치모델들이 개발되었다. 본 논문에서는 폐탄광지역의 지하수 리바운드 현상 분석시 활용할 수 있는 VSS-NET, GRAM, MODFLOW 모델에 대해 조사하고, 공간적/시간적 규모에서 각 모델의 적용 범위에 대해 소개하였다. 특히, GRAM 모델에 대해서는 상세한 분석을 수행하였으며 포트란 언어를 이용하여 프로그램을 구현하였다. GRAM 모델을 이용하여 국내 동원탄광 수갱의 지하수 리바운드 현상을 분석하였으며, 현장의 지하수위 계측 결과와 GRAM 모델의 분석 결과가 유사한 것으로 나타났다.

Keywords

References

  1. 석탄합리화사업단, 2004, (주) 동원 사북광업소 폐광에 대비한 광해대책 연구, 석탄산업합리화사업단 기술총서, pp. 29-37.
  2. Adams, R. and Younger, P.L., 2001, A strategy for modeling ground water rebound in abandoned deep mine systems, Ground Water, Vol. 39, No. 2, pp. 249-261. https://doi.org/10.1111/j.1745-6584.2001.tb02306.x
  3. Adams, R. and Younger, P.L., 2002, A physically based model of rebound in South Crofty tin mine, Cornwall, Mine Water Hydrogeology and Geochemistry, Vol. 198, pp. 89-97.
  4. Burke, S.P. and Younger, P.L., 2000, Groundwater rebound in the South Yorkshire coalfield: a first approximation using the GRAM model, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 33, pp. 149-160. https://doi.org/10.1144/qjegh.33.2.149
  5. Chadwick, A.J. and Morfett, J.C., 2004, Hydraulics in Civil and Environmental Engineering, (4th Edn.), Spon Press, London, UK, 600 p.
  6. Cheong, Y.W., Yim, G.J., Ji, S.W., Kang, S.S. and Skousen, J., 2012, Water quality changes of a closed underground coal mine in Korea, Environmental Monitoring and Assessment, Vol. 184, No. 1, pp. 503-513. https://doi.org/10.1007/s10661-011-1983-0
  7. Choi, Y. and Park. H.D., 2011, GIS Modeling for Design of In-pit Stormwater Ponds in Large Scale Open-pit Mines, Journal of The Korean Society for Geosystem Engineering, Vol. 48, No. 2, pp. 165-177. [In Korean with English abstract].
  8. Choi, Y., Park, H.D. and Kwon, H.H., 2011, Software for Hydrological Analysis of Tailings Dam Using GIS and ASI Algorithm, Journal of The Korean Society for Geosystem Engineering, Vol. 48, No. 5, pp. 549-559. [In Korean with English abstract].
  9. Choi, Y., Sunwoo, C. and Park, H.D., 2006, Control of open-pit mine drainage for mine reclamation using Geographic Information Systems, Journal of The Korean Society for Geosystem Engineering, Vol. 43, No. 5, pp. 429-438. [In Korean with English abstract].
  10. Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice-Hall Inc., New Jersey, USA, 604 p.
  11. Gandy, C.J. and Younger, P.L., 2007, Predicting Groundwater Rebound in the South Yorkshire Coalfield, UK, Mine Water and the Environment, Vol. 26, No. 2, pp 70-78. https://doi.org/10.1007/s10230-007-0153-7
  12. Henton, M.P., 1981, The problem of water table rebound after mining activity and its effects on ground and surface water quality, In: W. van Duijvenbooden, P. Glasbergen and H. van Lelyveld, eds., Quality of Groundwater, Elsevier, New York, USA, pp. 111-116.
  13. Kim, S.M., Choi, Y., Park, H.D., Kwon, H.H., Yoon, S.H. and Go, W.R., 2011, Analysis of Mine Leachate Transport Pathway on the Surface Using GIS, Journal of The Korean Society for Geosystem Engineering, Vol. 19, No. 3., pp. 560-572. [In Korean with English abstract].
  14. Kortas, L. and Younger, P.L., 2007, Using the GRAM Model to Reconstruct the Important Factors in Historic Groundwater Rebound in Part of the Durham Coalfield, UK, Mine Water and the Environment, Vol. 26, No. 2, pp. 60-69. https://doi.org/10.1007/s10230-007-0152-8
  15. McDonald, M.G. and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference ground-water flow model, United States Geological Survey, Techniques of Water Resources Investigations Report O6-A1. 273 p.
  16. Ryu, D.W., Kim, H.M., Oh, J.H., Sunwoo, C. and Jung, Y.B., 2009, Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine, TUNNEL & UNDERGROUND SPACE, Vol. 19, No. 3, pp. 248-260. [In Korean with English abstract].
  17. Sherwood, J.M., 1997, Modelling minewater flow and quality changes after coalfield closure, Unpublished Ph.D. thesis, Department of Civil Engineering, University of Newcastle, UK, 241 p.
  18. Sunwoo, C., Choi, Y., Park, H.D. and Jung, Y.B., 2007, Drainage Control and Prediction of Slope Stability by GIS-based Hydrological Modeling at the Large Scale Open Pit Mine, TUNNEL & UNDERGROUND SPACE, Vol. 17, No. 5, pp. 360-371. [In Korean with English abstract].
  19. Toran, L. and Bradbury, K.R., 1988, Groundwater flow model of drawdown and recovery near an underground mine, Ground Water, Vol. 26, No. 6, pp. 724-733. https://doi.org/10.1111/j.1745-6584.1988.tb00423.x
  20. Ward, R.C. and Robinson, N., 1990, Principles of Hydrology, (3rd Edn.), McGraw-Hill, London, UK, 365 p.
  21. Yoon, Y.K., 2011, Evaluation of Groundwater Flow through Rock Mass around Development Openings of Mine, TUNNEL & UNDERGROUND SPACE, Vol. 21, No. 5, pp. 370-376. [In Korean with English abstract].
  22. Younger, P.L. and Adams, R., 1999, Predicting mine water rebound. Environment Agency R&D Technical Report W179. Bristol, UK, 120 p.

Cited by

  1. Prediction of the Groundwater Inflow by Three-dimensional Hydrogeologic Modelling at an Underground Mine vol.55, pp.5, 2018, https://doi.org/10.32390/ksmer.2018.55.5.383
  2. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage vol.15, pp.5, 2018, https://doi.org/10.3390/ijerph15050951