DOI QR코드

DOI QR Code

Comparisons of Brittleness Indices of Shale and Correlation Analysis for the Application of Hydraulic Fracturing

수압파쇄 적용을 위한 셰일의 취성의 개념 고찰 및 취성도 간의 상관관계 분석

  • 박정아 (서울대학교 대학원 에너지시스템공학부) ;
  • 박보나 (서울대학교 대학원 에너지시스템공학부) ;
  • 민기복 (서울대학교 공과대학 에너지자원공학과)
  • Received : 2014.08.19
  • Accepted : 2014.08.27
  • Published : 2014.08.31

Abstract

Hydraulic fracturing is the key technology for production of shale gas, which is one of the major unconventional resources. Brittleness index is one of the most important mechanical properties which determine the efficiency of hydraulic fracturing. It was required that the production of shale gas increases with more brittle behavior. Confusingly, there are numerous definitions available for brittleness of rock. This paper summarizes various definitions of brittleness index, and presents correlation analysis of the brittleness indices by using the laboratory experimental results of 48 shale specimens in Korea. Generally, it shows a very weak positive correlation between the brittleness index ($B_1$) which is the ratio of uniaxial compressive strength to tensile strength and the brittleness index ($B_3$) which is calculated by using the Youngs modulus and Poisson's ratio. In addition, the role of Poissons ratio is not clear in defining brittleness indices. In conclusion, standardization of definition for brittleness index is required to apply it to hydraulic fracturing as a parameter for predicting the efficiency.

대표적인 비재래에너지자원인 셰일가스 생산을 위해서는 수압파쇄가 핵심적인 기술이다. 암석의 취성도는 셰일가스 생산을 위한 수압파쇄 효율결정의 가장 중요한 물성 중 하나이며, 셰일의 취성도가 클수록 셰일가스 생산량이 증가하는 관계를 보인다. 암석의 취성은 다양하게 정의되며 표준화된 정의가 없어 혼란이 존재한다. 본 논문에서는 취성도의 다양한 개념들을 살펴보고 실내 실험값을 이용하여 취성도를 측정하고 각기 다르게 정의된 취성도간의 상관관계에 대해서 고찰해보았다. 일반적으로 일축압축강도와 인장강도의 비율로 나타내는 취성도와, 탄성계수와 포아송비를 이용한 취성도를 비교하였을 때 같은 암석에 대한 취성도 간에 매우 약한 양의 상관관계를 가지고 있는 것을 확인할 수 있었다. 또한 포아송비의 경우 취성도에 미치는 영향이 명확하지 않은 것으로 나타났다. 수압파쇄 결과를 예측하기 위한 지표로써 취성도를 적용하기 위해서는 취성도의 개념의 표준화가 필요한 것을 알 수 있다.

Keywords

References

  1. Altindag, R., 2002, The evaluation of rock brittleness concept on rotary blast hole drills, The Journal of the South African Institute of Mining and Metallurgy, 61-66.
  2. Baron, L., Loguntwov, B., Pozin, E., 1962, Determination of the properties of rocks, Gosgortekhizdat, Moscow.
  3. Bieniawski, Z.T., 1967, Mechanism of brittle fracture of rock-PART I, II, III, Int. J. Rock Mech. Min. Sci. 4(4), 395-430. https://doi.org/10.1016/0148-9062(67)90030-7
  4. Bishop, A.W., 1967, Progressive failure with special reference to the mechanism causing it, In proc. of Geotechnical Conference, Oslo, Norway, 142-50.
  5. Buller, D., Kwong, S., Spain, D., Miller, M., 2010, A novel approach to shale-gas evaluation using a cased-hole pulsed neutron tool, In proc. of SPWLA 51st Annual Logging Symposium, Perth, Australia, Document ID:SPWLA-2010-87257.
  6. Cheon, D.-S., Park, C., Synn, J.-H., Jeon, S.-W., 2006, Study of brittle failure, Tunnel & Underground Space, 16(6), 437-450.
  7. Coates, D., Parsons, R., 1966, Experimental criteria for classification of rock substances, Int. J. Rock Mech. Min. Sci. & Geomech. abstr. 3(3), 181-89. https://doi.org/10.1016/0148-9062(66)90022-2
  8. Dusseault, M., McLennan, J., 2011 Massive multi-stage hydraulic fracturing, ARMA(American Rock Mechanics Association) e-Newsletter.
  9. Fairhurst, C., 2013, Fractures and fracturing: hydraulic fracturing in jointed rock, In Bunger, P., McLennan, J., Jeffrey, R. (eds), proc. of International Conference for Effective and Sustainable Hydraulic Fracturing, Brisbane, Australia, 47-79.
  10. Goodman, R.E., 1989, Introduction to rock mechanics (2nd ed.), John Wiley & Sons, New York.
  11. Hajiabdolmajid, V., Kaiser, P., 2003, Brittleness of rock and stability assessment in hard rock tunneling, Tunnelling and Underground Space Technology, 18, 35-48. https://doi.org/10.1016/S0886-7798(02)00100-1
  12. Hetenyi, M., 1966, Handbook of experimental stress analysis, John Wiley, New York.
  13. Holt, R.M., Fjaer, E., Nes, O.-M., Alassi, H.T., 2011, A shaly look at brittleness, In proc. of 45th US Rock Mechanics / Geomechanics Symposium, San Francisco, U.S.A.., Paper No:ARMA 11-366.
  14. Hucka, V., Das, B., 1974, Brittleness determination of rocks by different methods, Int. J. Rock Mech. Min. Sci. & Geomech. abstr. 11, 389-92. https://doi.org/10.1016/0148-9062(74)91109-7
  15. Ingram, G.M., Urai, J.L., 1999, Top-seal leakage through faults and fractures: the role of mudrock properties, Geological Society, London, Special Publications, 158(1), 125-135. https://doi.org/10.1144/GSL.SP.1999.158.01.10
  16. Jaeger, J.C., Cook, N.G.W., 1979, Fundamentals of rock mechanics (3rd ed.), Methuen & Co Ltd, London.
  17. Morley, A., 1944, Strength of materials, Longman, Green, London.
  18. Mullen, M.J., Roundtree, R., Barree, B., 2007, A composite determination of mechanical rock properties for stimulation design (What to do when you don't have a sonic log), In proc. of 2007 SPE Rocky Mountain Oil & Gas Technology Symposium, Denver, U.S.A., Document ID:SPE-108139-MS.
  19. Park, H.-I., Park, Y.-J., You, K.-H., Noh, B.-K., Seo, Y.-H., Park, C., 2009, A study on the stability of deep tunnels considering brittle failure characteristic, Tunnel & Underground Space, 19(4), 304-317.
  20. Park, J.-A., Park, B., Min, K.-B., 2013, Comparison of the definitions of shale brittleness for applying to hydraulic fracturing, In proc. of the Korean Society of Mineral and Energy Resources Engineers 2013, chuncheon, Korea, 313.
  21. Rickman, R., Mullen, M., Petre, E., Grieser, B., Kundert, D., 2008, A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale, In proc. of 2008 SPE Annual Technical Conference and Exhibition, Denver, U.S.A., Document ID:SPE-115258-MS.
  22. US Energy Information Administration, 2014, Annual energy outlook, U.S.A.
  23. Yamaguchi, U., Nishimatsu, Y., 1992, Introduction to rock mechanics (J.S., Yoon, Trans.), Goomiseogwan, Seoul, Original work published 1967.
  24. Yang, Y., Sone, H., Hows, A., Zoback, M.D., 2013, Comparison of brittleness indices in organic-rich shale formations, In proc. of 47th US Rock Mechanics / Geomechanics Symposium, San Francisco, U.S.A., Paper No:ARMA 13-403.
  25. Zoback, M.D., Kitasei, S., Copithorne, B., 2010, Addressing the environmental risks from shale gas development, Worldwatch Institute Briefing Paper 1, Natural Gas and Sustainable Energy Initiative.