• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.034 seconds

Detachment of nanoparticles in granular media filtration

  • Kim, Ijung;Zhu, Tongren;Jeon, Chan-Hoo;Lawler, Desmond F.
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • An understanding of particle-particle interactions in filtration requires studying the detachment as well as the attachment of nanoparticles. Nanoparticles captured in a granular media filter can be released by changing the physicochemical factors. In this study, the detachment of captured silver nanoparticles (AgNPs) in granular media filtration was examined under different ionic strengths, ion type, and the presence or absence of natural organic matter (NOM). Filtration velocity and ionic strength were chosen as the physical and chemical factors to cause the detachment. Increasing filtration velocity caused a negligible amount of AgNP detachment. On the other hand, lowering ionic strength showed different release amounts depending on the background ions, implying a population of loosely captured particles inside the filter bed. Overall detachment was affected by ionic strength and ion type, and to a lesser degree by NOM coating which resulted in slightly more detachment (in otherwise identical conditions) than in the absence of that coating, possibly by steric effects. The secondary energy minimum with Na ions was deeper and wider than with Ca ions, probably due to the lack of complexation with citrate and charge neutralization that would be caused by Ca ions. This result implies that the change in chemical force by reducing ionic strength of Na ions could significantly enhance the detachment compared to that caused by a change in physical force, due to a weak electrostatic deposition between nanoparticles and filter media. A modification of the 1-D filtration model to incorporate a detachment term showed good agreement with experimental data; estimating the detachment coefficients for that model suggested that the detachment rate could be similar regardless of the amount of previously captured AgNPs.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

A Study on the Site analysis of Jongmyo area -With Feng-shui theory and Geomagnetic Field

  • Han, Jong-Koo;Park, Tong-So
    • KIEAE Journal
    • /
    • v.2 no.4
    • /
    • pp.41-47
    • /
    • 2002
  • East Asian explain the changes of substance happened on earth and those of human life with the conceptual frame of "Gi-ki"(地氣; earth vital energy) and organize them by the system of "Feng-shui(風水) theory. The core of Feng-shui theory is reading the expression of the nature and feeling the Gi-ki from the expression. One of the properties of the earth is that the earth has a magnetic field associated with it- the Geomagnetic field. The geomagnetic field is produced by a combination of the effects of electric currents in the earth's liquid core, the magnetization of crustal rocks, external electric current systems that surround the earth and currents induced in the outer layers of the earth by magnetic field variations. The sameness of logic between Feng-shui and geopathic zones is that both are concerned with the discrimination of site and the energy of places, in other words both disciplines are concerned with how the environment can influence people. In this context the operation of Gj-ki can be related with the effect caused by geomagnetic field on site. In this study Jongmyo(宗廟), one of the representative traditional architecture in Korea is selected because the site selection and building layout follows Feng-shui faithfully according to Taejo silok (太祖實錄, Annals of King Taejo). Observing the landforms surrounding Jongmyo, Jongmyo is apparently located in auspicious places named Gumge Poranhyoeng(金鷄抱卵形, a Feng-shui landscape of golden hen sitting on eggs). The geomagnetic investigation of Jongmyo shows that the geomagnetic values of Toekan(the space near Hyeol) are relatively high and uniform and those of Sangweoldae and Haweoldae are decreased in accordance with the distance. The result shows that there is possibility that Feng-shui has scientific basis related with geomagnetic field. Feng-shui theory can suggest a direction for designing the sustainable building for living with nature.

Basic Research for Sustainable Development of the Compact City -Focusing on the Characteristics Analysis for City/ Society/Residence of Europe/USA/Japan- (지속가능한 콤팩트도시 개발을 위한 기초 연구 -유럽, 미국, 일본의 도시, 사회, 거주 특징분석을 중심으로-)

  • Baek, Seung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.595-604
    • /
    • 2016
  • This study discusses the sustainable development of the compact city. The problems of urban sprawl have long been recognized. Urban sprawl results from the confluence of several factors: the lure of cheap open land outside the city, advances in transportation, the ready availability of capital to buy property, the increase in the number of real estate developers and the mass production of housing. The term compact city has the opposite connotation to urban sprawl. Compact cities provide a more energy efficient and less polluting environment, because dwellers within them live closer to shops and work and can easily walk, bike or take public transport. In other words, the compact city has the objective of facilitating the integration of the different functions through the intensive development of various facilities, such as residences, commerce, businesses and of improving the efficiency of urban energy usage by decreasing the volume of traffic.

Optimal Many-core Processor Architecture for Different Ultrasonic Image Resolutions (초음파 영상선호의 크기 변화에 따른 최적의 매니코어 프로세서 구조)

  • Kang, Seong-Mo;Kim, Jong-Myon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • This paper proposes an optima] many-core processor architecture that meets the requirements of low power and high performance for different ultrasonic image resolutions in hand-held ultrasonic devices. To identify the optimal many-core architecture, seven different PE configurations are simulated for processing ultrasonic images in terms of execution performance and energy consumption. Experimental results indicate that the highest energy efficiencies are achieved at PEs=1,024, 64, and 256 for ultrasonic images at $256{\times}256$, $320{\times}240$, and $800{\times}480$ resolutions, respectively. In addition, the maximum area efficiencies are obtained at PEs=256 (for $256{\times}256$ and $800{\times}480$ image resolutions) and 64 (for $320{\times}240$ image resolution).

Optimal Routes Analysis of Vehicles for Auxiliary Operations in Open-pit Mines using a Heuristic Algorithm for the Traveling Salesman Problem (휴리스틱 외판원 문제 알고리즘을 이용한 노천광산 보조 작업 차량의 최적 이동경로 분석)

  • Park, Boyoung;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This study analyzed the optimal routes of auxiliary vehicles in an open-pit mine that need to traverse the entire mine through many working points. Unlike previous studies which usually used the Dijkstra's algorithm, this study utilized a heuristic algorithm for the Traveling Salesman Problem(TSP). Thus, the optimal routes of auxiliary vehicles could be determined by considering the visiting order of multiple working points. A case study at the Pasir open-pit coal mine, Indonesia was conducted to analyze the travel route of an auxiliary vehicle that monitors the working condition by traversing the entire mine without stopping. As a result, we could know that the heuristic TSP algorithm is more efficient than intuitive judgment in determining the optimal travel route; 20 minutes can be shortened when the auxiliary vehicle traverses the entire mine through 25 working points according to the route determined by the heuristic TSP algorithm. It is expected that the results of this study can be utilized as a basis to set the direction of future research for the system optimization of auxiliary vehicles in open-pit mines.

Simulation of Shovel-Truck Haulage Systems in Open-pit Mines by Considering Breakdown of Trucks and Crusher Capacity (트럭 고장 및 파쇄기 처리용량을 고려한 노천광산 쇼밸-트럭 운반 시뮬레이션)

  • Park, Sebeom;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents a case study that performed simulations on shovel-truck haulage systems in an open-pit mine by considering truck's breakdown and crusher's capacity. The SSangyoung limestone open-pit mine in Korea was selected as a study area and investigated to design the simulation algorithms. The GPSS/H simulation language is used to implement the simulation algorithms as a console application(simulator). The values of input parameters for simulator were measured by field investigation in the study area. The simulation results showed that 7 trucks can maximize the daily profit of haulage operations(i.e., 73,775 USD) when considers the frequency of trucks' breakdown as 1/40 $hour^{-1}$. In addition, the crusher capacity of 1300 tph is required to improve the efficiency of shovel-truck haulage systems in the study area.

A Study on Measurement of Rock Joint Roughness Using the Digital Photogrammetry (디지털 사진측량에 의한 암석의 절리면 거칠기 측정에 관한 연구)

  • Seo, Hyeonkyo;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.438-448
    • /
    • 2012
  • Applicability of the digital photogrammetry technique for measurement of rock joint roughness is addressed in this study using the DSLR camera. Measurements of roughness were performed for two rock joint specimens using the laser profiler and the digital photogrammetry technique. The statistical roughness parameters were estimated for two dimensional roughness profiles constructed from each method. Obtained results showed that the statistical roughness parameters estimated from the digital photogrammetry technique were lower than that based on the laser profilometer, even though a high degree of correlation might exist between them. The effects of camera direction on roughness measurements were found to negligible in practice. The digital photogrammetry could be a cost effective method to measure the roughness of rock joints with various scale at the fields.

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI) (Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가)

  • Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

A Study on the Prediction of Surface Subsidence Zone through the Case Studies on Mined-out Area (채굴적에 의한 지반침하 사례 분석을 통한 침하발생 범위의 추정에 관한 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2013
  • Graphical method has been widely applied to the prediction of subsidence area, and is known to have advantages in analysis of trough subsidence which is common in horizontally seamed mine area. However, it is reported that most of the ore bodies in Korea are geologically inclined from sub-horizontal to steep, and therefore, the sinkhole subsidence is frequent in abandoned mine area. For these reasons, it is not to be desired that graphical method is applied for predicting the subsidence occurrence. This paper describes the results of subsidence zone prediction considering the dip direction and the opposite direction of inclined ore bodies from the case studies on the 163 subsidence occurrence regions. The results show also the assumed angle which can define the range of subsidence in the surface area. In conclusion, the limit of this angle is suggested after taking into account the comparison with graphical method and the application to the case histories.