• Title/Summary/Keyword: energy space

Search Result 3,298, Processing Time 0.031 seconds

Induced Activity and Space Dose Distribution from Medical Linear Accelerator (의료용(醫療用) 선형가속기(線型加速器)에 의한 산난공간(散亂空間) 선량분포(線量分布)와 유도방사능(誘導放射能))

  • Chu, Sung-Sil;Park, Chang-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • It is important to measure and protect from the radiation space dose and induced activity at the high energy medical linear accelerator facilities. These are to consider the additional risk to patients undergoing treatment, machine operators and staff members. Measurements of the space dose distribution and induced radioactivity at the 18 MeV medical linear accelerator facility in the Yonsei Cancer Center. 1. Exposure space dose for 300 rads monitor doses of 18 MeV electron are measured as 50 mR at 1 meter from patients. 2. Exposure space dose for 300 rads monitor doses of 10 MV X-ray are detected as 350 mR at 1 meter from phantom. 3. Induced radioactivity by photonuclear reaction was measured as 0.65 mR/hr from collimater after 30 Gy(3,000 rads) irradiated. 4. Analyzing the decay curves and energy spectrum of induced radioactivity, detected a few materials to be activated by photoneutron reaction, $^{65}Cu({\gamma}{\cdot}n)\;^{64}Cu,\;^{186}W({\gamma}{\cdot}n)\;^{185}W,\;^{181}Ta({\gamma}{\cdot}n)\;^{180}Ta,\;^{199}Au({\gamma}{\cdot}n)\;^{198}Au$.

  • PDF

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system (태양열 시설원예 난방시스템의 장기성능 특성 분석 연구)

  • Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-tracing

  • Yoon, Dong Hyeon;Song, Jung Heon;Koh, June Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Since it was first studied in 1980, solar energy analysis model for geographic information systems has been used to determine the approximate spatial distribution of terrain. However, the spatial pattern was not able to be grasped in 3D (three-dimensional) space with low accuracy due to the limitation of input data. Because of computational efficiency, using a constant value for the brightness of the sky caused the simulation results to be less reliable especially when the slope is high or buildings are crowded around. For the above reasons, this study proposed a model that predicts solar energy of vertical surfaces of buildings with four stages below. Firstly, CIE (Commission Internationale de l'Eclairage) luminance distribution model was used to calculate the brightness distribution of the sky using NREL (National Renewable Energy Laboratory) solar tracking algorithm. Secondly, we suggested a method of calculating the shadow effect using ray tracing. Thirdly, LOD (Level of Detail) 3 of 3D spatial data was used as input data for analysis. Lastly, the accuracy was evaluated based on the atmospheric radiation data collected through the ground observation equipment in Daejeon, South Korea. As a result of evaluating the accuracy, NMBE was 5.14%, RMSE 11.12, and CVRMSE 7.09%.

Application of Pervaporation Membrane Process in Petrochemical Industry (석유화학공업에서의 투과증발막의 응용)

  • Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • Pervaporation process using membrane is newly emerging energy saying and cost effect process instead of distillation process. Especially, in pertrochemical industry, pervaporation process is a strong candidate to substitute the conventional energy consuming processes because that petrochemical industry has much energy consuming separation processes, many azeotrope mixtures to separate and needs to compact space to install new process units. Aromatic/aliphatic separation including benzene/cyclohexane mixture, olefin/paraffin separation, xylene isomer separation, reactive monomer recovery and sulfur compound removal from gasoline have been inversitigated for the application of pervaporation membrane process by many researchers and are under commercializing.

Ring-shaped Sound Focusing using Wavenumber Domain Matching (파수영역매칭을 통한 링 형상의 음향집적공간 형성)

  • Park, Jin-Young;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.506-509
    • /
    • 2006
  • Shaped Sound Focusing is defined as the generation of acoustically bright shape in space using multiple sources. The acoustically bright shape is a spatially focused region with relatively high acoustic potential energy level. In view of the energy transfer, acoustical focusing is essential because acoustic energy is very small to use other type of energy. Practically, focused sound shape control not a point is meaningful because there are so many needs to enlarge the focal region especially in clinical uses and others. If focused sound shape can be controlled, it offers various kinds of solutions for clinical uses and others because a regional focusing is essentially needed to reduce a treatment time and enhance the performance of transducers. For making the shaped-sound field, control variables, such as a number of sources, excitation frequency, source positioning, etc., should be taken according to geometrical sound shape. To verify these relations between them, wavenumber domain matching method is suggested because wavenumber spectrum can provide the information of control variables of sources. In this paper, the procedures of shaped sound focusing using wavenumber domain matching and relations between control variables and geometrical sound shape are covered in case of an acoustical ring.

  • PDF

Steam Reforming of Methane for Chemical Heat Storage As a Solar Heat Storage(Part 2. Parameters Effect on Methane Conversion) (화학축열을 통한 태양열 저장을 위한 메탄의 스팀개질 반응 특성(Part 2. 조업변수의 영향))

  • Yang, D.H.;Chung, C.H.;Han, G.Y.;Seo, T.B.;Kang, Y.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.29-35
    • /
    • 2001
  • The chemical heat storage as the one way of utilization for high temperature solar energy was considered. The stram reforming reaction of methane was chosen for endothermic reaction. The reactor was made of stainless steel tube and it's dimension was 0.635 cm I.D. and 30 cm long, coiled tube because of the geometry requirement of solar receiver The effects of space velocity and reactants mole ratio on the methane conversion and CO selectivity were examined. From the experimental results, the optimum steam/methane mole ratio was determined.

  • PDF

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Viologen-based All-in-one Electrochromic Devices with a Lateral Electrode Structure (평면전극구조를 갖는 바이올로진 기반의 일체형 전기변색소자)

  • Kim, Hyun-Jeong;Lee, Sang-Rae;Choi, Jin-Hee;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.58-62
    • /
    • 2020
  • Recently, electrochromic devices (ECDs) have gathered increasing attention owing to their high color contrast and memory effect, which make them highly applicable to smart windows, auto-dimming mirrors, sensors, etc. Traditional ECDs have a sandwich structure that contains an electrochromic layer between two ITO substrates. These sandwich-type devices are usually fabricated through the lamination of two electrodes and followed by the injection of a liquid electrolyte in the inner space. However, this process is sometimes complex and time consuming. In this study, we fabricated ECDs with a lateral electrode structure that uses only an ITO substrate and an all-in-one electrochromic gel, which is a mixture of electrolyte and electrochromic material. Furthermore, we investigated the EC properties of the lateral-type device by comparing it with a sandwich-type device. The lateral-type ECD shows strong blue absorption as the applied voltage increases and has a competitive coloration efficiency compared to the sandwich-type device.