• Title/Summary/Keyword: energy resources

Search Result 4,647, Processing Time 0.031 seconds

Characteristic Analysis of Small Hydro Power Resources for River System (수계별 소수력자원의 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

NUCLEAR HUMAN RESOURCE PROJECTION UP TO 2030 IN KOREA

  • Min, Byung-Joo;Lee, Man-Ki;Nam, Kee-Yung;Jeong, Ki-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.375-382
    • /
    • 2011
  • The prospects for growth of the nuclear power industry in Korea have improved remarkably as the demand for energy increases in stride with economic development. Meanwhile, as nuclear energy development is enhanced, nuclear technology has also improved evolutionarily and innovatively in the areas of reactor design and safety measures. As nuclear technology development in Korea advances, more human resources are required. Accordingly, the need for a well-managed program of human resource development (HRD) aimed at assuring needed capacities, skills, and knowledge and maintaining valuable human resources through education and training in various nuclear-related fields has been recognized. A well-defined and object-oriented human resource development and management (HRD&M) is to be developed in order to balance between the dynamics of supply and demand of the workforce in the nuclear industry. The HRD&M schemes include a broad base of disciplines, education, sciences, and technologies within a framework of national sustainable development goals, which are generally considered to include economics, environment, and social concerns. In this study, the projection methodology considering a variety of economic, social, and environmental factors was developed. Using the developed methodology, medium- and long-term nuclear human resources projections up to 2030 were conducted in compliance with the national nuclear technology development programmes and plans.

The characteristics of heat storage and emission of PCM in Ondol system (잠열저장재를 이용한 온돌판넬의 축열 및 방열특성에 관한 연구)

  • Cho, Soo;Yoo, Je-In;Chung, Hun-Saeng
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.38-43
    • /
    • 1990
  • The present study was to investigate the use of a phase change material for hydronic radiant floor heating. Two identical unit test cells sized $1.8m^L{\times}1.8m^W{\times}1.8m^H$ were built and installed with specially designed $1.6cm^T{\times}9cm^W{\times}80cm^H$ aluminum Ondol-panels holding 1.25kg of calcium chloride hexahydrate(CCH) each. It was found that the Ondol-panel with CCH reduced the room temperature fluctuations and maintains the phase changing temperature for considerably long duration, $2{\sim}4$ times of heating hour, over no-CCH one.

  • PDF

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

A Study on the Construction of Zero Energy Village using Waste and Biomass (폐자원 및 바이오매스를 이용한 에너지자립 마을 구축에 관한 연구)

  • Lee, Taek-Gwan;Lee, Jong-Yeon;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.28-32
    • /
    • 2011
  • This paper introduces about the study on the construction of zero energy villages in Korea using waste and biomass, and explains how to analyze the quantity of various resources from agriculture, livestock industry, forestry, and food waste with a village as a unit. Finally, three different scenarios for the construction of zero energy villages were suggested, based on the presumed amount of energy per each town.

A Study on the Heat and Mass Balance of Smelting Reduction Process for Manganese Nodules (망간단괴 용융환원 제련공정의 물질 및 열수지 모델링)

  • Cho, Moon Kyung;Park, Kyung Ho;Min, Dong Joon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.304-310
    • /
    • 2009
  • Recently, manganese nodule has been focused on alternative resources because of its high grade of noble metallic elements such as Co, Ni, and Cu etc. From the viewpoint of an optimization the operating variables for energy efficiency of smelting reduction process, thermodynamic model for smelting reduction process of Manganese nodule was developed by using energy and material balance concept. This model provided that specific consumption of pure oxygen and coke was strongly depended on post combustion ratio (PCR) and heat transfer efficiency (HTE). The dressing and dehydrating process of low grade manganese can be proposed an essential process to minimize the specific energy consumption with decreasing slag volume. The effect of electricity coal base smelting reduction process was also discussed from the energy optimizing point of view.

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

Forced Convection Modelling of a Solar Central Receiver using Nonisothermal Cylinders in Crossflow (비등온 실린더 모델을 이용한 태양로의 강제 대류에 의한 열 손실 분석)

  • Chun, Won-Gee;Jeon, Myung-Seok;Jeon, Hong-Seok;Auh, P. Chung-Moo;Boehn, Robert F.
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.13-18
    • /
    • 1990
  • When nonuniform thermal boundary conditions are imposed on the surface of a circular cylinder in crossflow, the heat transfer characteristics can be quite different compared to what is found for isothermal or constant heat flux boundary conditions. In the present analysis, two kinds of nonuniform boundary conditions along the circumference of the cylinder are considered in a uniform stream of air: step changes and linear profiles. Step changes in temperature can arise on the surface of an external, cylindrical, solar central receiver. As the working fluid(water) flows through the vertical tubes that ring the circumference of Solar One(a solar central receiver in Barstow, California), the solar flux on the receiver heats the water from a liquid to a superheated state. In this process, portions of the receiver panels, and thus portions of the circumference of the cylinder, function as a preheater, boiler, or superheater. Hence the surface temperature can vary significantly around the cylinder. Common engineering practice has been to use an average wall temperature with an isothermal cylinder heat transfer coefficient when estimating the convective loss in these kinds of situations.

  • PDF

Numerical Analysis on Flow Behavior of Gas Hydrate Bearing Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 가스하이드레이트 퇴적층의 해리 유동 전산 분석 연구)

  • Kim, Ji-Su;Lee, Rok-Sang;Lim, Jong-Se;Kim, Se-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.102-115
    • /
    • 2014
  • In the Ulleung basin in the East Sea of Korea, it is assumed that huge amounts of gas hydrate(GH) are buried. In 2010, drilling operation was performed at the 2nd Ulleung Basin Gas Hydrate Drilling Expedition(UBGH2) to designate a site for field production test. In this study, based on the field production test site model reflecting geological properties, GH dissociation flow interpretation is analyzed and sensitivity analysis is performed to gain understanding of production behavior properties following bottomhole pressure(BHP) variation by using the numerical simulation. The results of this study provide a basis for the preliminary analysis of field production test site.

A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture (석유 코크스, 바이오매스, 혼합연료의 이산화탄소 가스화 반응 연구)

  • Kook, Jin Woo;Shin, Ji Hoon;Gwak, In Seop;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.184-192
    • /
    • 2015
  • Characteristics of Char-$CO_2$ gasification for petroleum coke, biomass and mixed fuels were compared in the temperature range of $1,100{\sim}1,400^{\circ}C$ using TGA (Thermogravimetric analyzer). Kinetic constants with respect to reaction temperature were determined by using different gas-solid reaction models. Also activation energy (Ea) and pre-exponential factors ($K_0$) in each models were calculated by using Arrhenius equation and then were compared with experimental values to determine reaction rate equation for char-$CO_2$ gasification. Reaction time for $CO_2$ gasification decreased with an increase of reaction temperature. Also, the activation energy of $CO_2$ gasification reaction for mixture with petroleum coke and biomass decreased with increasing biomass contents. This indicates that mixing with biomass could bring synergy effects on $CO_2$ gasification reaction.