• Title/Summary/Keyword: energy principle

Search Result 1,027, Processing Time 0.025 seconds

Progressive collapse analysis of steel frame structure based on the energy principle

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.553-571
    • /
    • 2016
  • The progressive collapse potential of steel moment framed structures due to abrupt removal of a column is investigated based on the energy principle. Based on the changes of component's internal energy, this paper analyzes structural member's sensitivity to abrupt removal of a column to determine a sub-structure resisting progressive collapse. An energy-based structural damage index is defined to judge whether progressive collapse occurs in a structure. Then, a simplified beam damage model is proposed to analyze the energies absorbed and dissipated by structural beams at large deflections, and a simplified modified plastic hinges model is developed to consider catenary action in beams. In addition, the correlation between bending moment and axial force in a beam during the whole deformation development process is analyzed and modified, which shows good agreement with the experimental results.

STUDY OF SPECTRAL ENERGY DISTRIBUTION OF GALAXIES WITH PRINCIPAL COMPONENT ANALYSIS

  • Kochi, Chihiro;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Yano, Kenichi;Baba, Shunsuke
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.209-211
    • /
    • 2017
  • We performed Principle Component Analysis (PCA) over 264 galaxies in the IRAS Revised Bright Galaxy Sample (Sanders et al., 2003) using 12, 25, 60 and $100{\mu}m$ flux data observed by IRAS and 9, 18, 65, 90 and $140{\mu}m$ flux data observed by AKARI. We found that (i)the first principle component was largely contributed by infrared to visible flux ratio, (ii)the second principal component was largely contributed by the flux ratio between IRAS and AKARI, (iii)the third principle component was largely contributed by infrared colors.

Study on the Generalization of the Extended Framework of Hamilton's Principle in Transient Continua Problems (확장 해밀턴 이론의 일반화에 대한 고찰)

  • Kim, Jinkyu;Shin, Jinwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • The present work extends the recent variational formulation to more general time-dependent problems. Thus, based upon recent works of variational formulation in dynamics and pure heat diffusion in the context of the extended framework of Hamilton's principle, formulation for fully coupled thermoelasticity is developed first, then, with thermoelasticity-poroelasticity analogy, poroelasticity formulation is provided. For each case, energy conservation and energy dissipation properties are discussed in Fourier transform domain.

Study of Energy Separation Mechanism in Vortex Tube by CFD (볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구)

  • Choi, Won-Chul;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

A Unique Function of Reaction Path (I). Definition and Approximation (반응 경로의 일의적 함수 (제 1 보). 정의 및 근사)

  • Kim, Ho-Jing;Jang, Hyo-Weon
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.94-102
    • /
    • 1988
  • A quantitative description of the principle of least motion is suggested. The reaction path function of electronic variables, its norm and the reaction path average energy, which are unique for a given reaction path on a potential energy surface of a reacting system, are defined and their characteristics are discussed. It is postulated that the norm of the function and the average energy can be used as a criterion for identification of the preferred path of a unimolecular isomerization reaction. For a molecule with a certain symmetry, the preferred path, with which Woodward-Hoffmann rule agrees, is immediately identified without laborious computation.

  • PDF

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle

  • Wu, Yaopeng;Lu, Erle;Zhang, Shuai
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.377-384
    • /
    • 2018
  • Bi-stable structure can be stable in both its extended and coiled forms. For the un-stressed thin cylindrical shell, the strain energy expressions are deduced by using a theoretical model in terms of only two parameters. Based on the principle of minimum potential energy, the bi-stable behaviors of the cylindrical shells are investigated. The results indicate that the isotropic cylindrical shell does not have the second stable configuration and laminated cylindrical shells with symmetric or antisymmetric layup of fibers have the second stable state under some confined conditions. In the case of antisymmetric laminated cylindrical shell, the analytical expressions of the stability are derived based on the extremal principle, and the shell can achieve a compact coiled configuration without twist deformation in its second stable state. In the case of symmetric laminated cylindrical shell, the explicit solutions for the stability conditions cannot be deduced. Numerical results show that stable configuration of symmetric shell is difficult to achieve and symmetric shell has twist deformation in its second stable form. In addition, the roll-up radii of the antisymmetric laminated cylindrical shells are calculated using the finite element package ABAQUS. The results show that the value of the roll-up radii is larger from FE simulation than from theoretical analysis. By and large, the predicted roll-up radii of the cylindrical shells using ABAQUS agree well with the theoretical results.

A study on vibration characteristics of passenger car tire under the static load (정하중을 받는 승용차 타이어의 진동특성에 관한 연구)

  • Moon, Il-Dong;Lee, Tae-Keun;Hong, Dong-Pyo;Kim, Byoung-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.14-22
    • /
    • 1995
  • We treat the vibrations of circular beam and make use of the method employed by J.T.Tielking, which is based on the principle of Hamilton. The Hamilton's principle requires the determinations of the potential and the kinetic energy of the model as well as done by internal pressure forces. Thje potential energy is composed of a part due to elastic deformations of the beam and a part due to radial and tangential displacements of the tread band with respect to the wheel rim. The equations of motion for such a model are derived by reference to conventional energy method. The accuracy of the expressions is demonstrated by comparison of calculated and experimental natural frequencies for circular beam. The circular beam experiences a harmonic, radial excitat- ion acting at a fixed point on the beam. Modal parameters varying the inflation pressure and load are determined experimentally by using the transfer function method.

  • PDF

Analysis of cable structures through energy minimization

  • Toklu, Yusuf Cengiz;Bekdas, Gebrail;Temur, Rasim
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.749-758
    • /
    • 2017
  • In structural mechanics, traditional analyses methods usually employ matrix operations for obtaining displacement and internal forces of the structure under the external effects, such as distributed loads, earthquake or wind excitations, and temperature changing inter alia. These matrices are derived from the well-known principle of mechanics called minimum potential energy. According to this principle, a system can be in the equilibrium state only in case when the total potential energy of system is minimum. A close examination of the expression of the well-known equilibrium condition for linear problems, $P=K{\Delta}$, where P is the load vector, K is the stiffness matrix and ${\Delta}$ is the displacement vector, it is seen that, basically this principle searches the displacement set (or deformed shape) for a system that minimizes the total potential energy of it. Instead of using mathematical operations used in the conventional methods, with a different formulation, meta-heuristic algorithms can also be used for solving this minimization problem by defining total potential energy as objective function and displacements as design variables. Based on this idea the technique called Total Potential Optimization using Meta-heuristic Algorithms (TPO/MA) is proposed. The method has been successfully applied for linear and non-linear analyses of trusses and truss-like structures, and the results have shown that the approach is much more successful than conventional methods, especially for analyses of non-linear systems. In this study, the application of TPO/MA, with Harmony Search as the selected meta-heuristic algorithm, to cables net system is presented. The results have shown that the method is robust, powerful and accurate.

VALVELESS PUMPING IN OPEN TANK SYSTEM USING ENERGY CONSERVING COMPARTMENT MODEL

  • Jung, Eun-Ok;Kim, Do-Wan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.961-987
    • /
    • 2012
  • A compartment model of the flow driven by pumping without valves (valveless pumping) in an open tank system is proposed. By the open tank system, we mean that two rigid cylindrical tanks are connected with an elastic tube. An incompressible fluid fills this system up to a certain level in tanks under the gravity. The compartment model for analyzing such open system is derived from the energy principle which will be called the energy conserving compartment model or shortly the ECCM. Based on this ECCM of valveless pumping, we explore the occurrence of directional net flow or directional net power by a specific excitation at an asymmetric part of the elastic tube. The interaction between deformable elastic tube and the fluid inside is considered in the ECCM. The reliability of the ECCMis investigated through some physical examples. The ECCM shows the existence of directional net power of the valveless pump system with open tanks and confirms that the direction and magnitude of the net power depend on the pumping frequency as well. Furthermore, the phase synchronization in time between the fluid pressure difference and the external pinching force over the pumping region is highly related to the direction of energy storing or net power.