• 제목/요약/키워드: energy principle

검색결과 1,036건 처리시간 0.028초

에너지 트래핑 효과를 이용한 이중전극 세라믹 필터의 특성 (The characteristics of two-electrod-ceramic filter using energy trapping effect)

  • 김원석;박기엽;송준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1419-1421
    • /
    • 1994
  • The method of suppression based on the principle of energy trapping effect is very effective at high frequency. In this paper, We intended to get resonant frequency and bandpass filer characteristics in appling to vibration mode of PZT-4 and PZT-8 using trapped energy phenomenon. First, we theoretically analyzed a piezoelectric ceramic filter characteristics changing the thickness of ceramic plate, electrode spacing and distance between the two pairs of electrodes. We also experimentally investigated characteristics of ceramic filter made.

  • PDF

2단 자기스위치를 사용한 고속 펄스발생기의 동작 특성 (Operation characteristics of fast pulse generator using a 2-stage magnetic switch)

  • 김복권;권순걸;서기영;이현우
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.139-147
    • /
    • 1996
  • In this study a two-stage fast pulse generaor using magnetic switches is proposed. The scheme consist of a switch, an inductor and two pairs of capacitor and saturable inductors, a linear transformer. The basic principle and the operation are described using a set of given parameters. The main issue of the magnetic pulse genration scheme is the system efficiency. This study focuses on the system efficiency improvement using magnetic switches. The voltage compression ratio, energy transfer with respect to core area are investigated. The output voltage and transferred energy as a function of input voltage are also included. Also, an analysis and experiments are performed to verify the porposed topology by implementing a 10[J] class experimental circuit. The efficiency of the transferred energy a tload side is 82%.

  • PDF

Soil foundation effect on the vibration response of concrete foundations using mathematical model

  • Dezhkam, Behzad;Yaghfoori, Ali
    • Computers and Concrete
    • /
    • 제22권2호
    • /
    • pp.221-225
    • /
    • 2018
  • In this paper, vibration analysis of concrete foundations resting on soil medium is studied. The soil medium is simulated by Winkler model considering spring element. The concrete foundation is modeled by thick plate elements based on classical plate theory (CPT). Utilizing energy method consists of potential energy, kinetic energy and external works in conjunction with Hamilton's principle, the motion equations are derived. Assuming the simply supported boundary condition for the concrete foundation, the Navier method is used for calculating the frequency of the structure. The effect of different parameters such as soil medium, mode numbers, length to width ratio and length to thickness ratio of the concrete foundation are shown on the frequency of the structure. At the first, the results are validated with other published works in order to show the accuracy of the obtained results. The results show that considering the soil medium, the frequency of the structure increases significantly.

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

전력품질 개선 및 부하 분담 기능을 갖는 계통 연계형 소규모 에너지 저장 시스템 (Grid-interactive Small Battery Energy Storage System with High Power Quality and Demand Side Management)

  • 고성훈;신영찬;이성룡
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권8호
    • /
    • pp.387-394
    • /
    • 2005
  • This paper deals with the grid-interactive small battery energy storage system, which aims at the integration o( power quality improvement and demand side management. The main purpose of the proposed system is to achieve the peak power cutting and to compensate the current harmonics and reactive power at the point of installation on power distribution for residential homes. paper deals with the grid-interactive small battery energy storage system, In this paper, the basic principle and control algorithm is analyzed, theoretically and the design methodology of the system is discussed. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1 KVA load capacity is presented.

AC Plasma Display Panel구동 장치의 고효율 전력 회수 회로에 관한 연구 (A Study on High Efficient Energy Recovery Circuit for AC Plasma Display Panel Drive)

  • 윤원식;강필순;박한웅;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.442-445
    • /
    • 2001
  • The sustaining driver for color ac plasma display panel should provide alternating high voltage pulses and recover the energy discharged from the intrinsic capacitance between the scanning and sustaining electrodes inside the panel. In this paper, a novel efficient energy recovery circuit employing boost-up function is proposed to achieve a faster rise-time and in order to obtain a stable sustain voltage. The principle of operation, features, and simulated results are illustrated and verified on an equivalent capacitance, which is equals In that of 40-inch-panel, 200 (kHz).

  • PDF

A Novel Switched-Capacitor Based High Step-Up DC/DC Converter for Renewable Energy System Applications

  • Radmand, Fereshteh;Jalili, Aref
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1402-1412
    • /
    • 2017
  • This paper presents a new high step-up dc/dc converter for renewable energy systems in which a high voltage gain is provided by using a coupled inductor. The operation of the proposed converter is based on a charging capacitor with a single power switch in its structure. A passive clamp circuit composed of capacitors and diodes is employed in the proposed converter for lowering the voltage stress on the power switch as well as increasing the voltage gain of the converter. Since the voltage stress is low in the provided topology, a switch with a small ON-state resistance can be used. As a result, the losses are decreased and the efficiency is increased. The operating principle and steady-states analyses are discussed in detail. To confirm the viability and accurate performance of the proposed high step-up dc-dc converter, several simulation and experimental results obtained through PSCAD/EMTDC software and a built prototype are provided.

Rapid Prototyping of Aero-engine Complex Control Method

  • Lu, Jun;Guo, Ying-Ging;Wang, Bin-Zheng
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.59-62
    • /
    • 2008
  • This paper presents an approach of complex control method(CCM) real-time simulation and rapid prototyping for aero-engine control system and describes its principle and realization in detail. This approach is mainly based on MATLAB/RTW for rapid prototyping from system modeling to embedded implementation. According to the simulation results between automatic code and manual code for an aeroengine multi-variable control method, it shows that this approach is feasible and effective, and not only decreases development cycle but also improves the reliability and universality. So a series of problems can be resolved during the simulation stage and rapid application to prototype testing.

  • PDF

습증기 투입 조건에 따른 가습용 중공사막 튜브 수분 투과 특성 (Moisture Permeation Characteristics of Hollow Fiber Membrane Tube for Humidification According to Input Conditions of Wet Steam)

  • 채종민;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.620-626
    • /
    • 2018
  • Recently, fuel cell field is receiving much attention as an environmentally friendly energy in the world. Among the various types of fuel cells, in the case of PEMFC, ions move through the membrane in the middle of the unit cell. Therefore, proper moisture is required inside the PEMFC. In the case of membrane type humidifier, flat membrane or hollow fiber membrane is mainly used. Since various parameters can change the performance, the performance investigation has to be carried out with parameters. In this study, water transport of hollow fiber membrane was investigated in terms of principle operating conditions such as temperature and flow rate.

Application of Multichannel Quantum Defect Theory to the Triatomic van der Waals Predissociation Process

  • Chun-Woo Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권2호
    • /
    • pp.228-238
    • /
    • 1991
  • Generalized multichannel quantum defect theory [C. H. Greene et al. Phys. Rev., A26, 2441 (1982)] is implemented to the vibrational predissociation of triatomic van der Waals molecules. As this is the first one of such an application, the dependences of the quantum defect parameters on energy and radius are examined carefully. Calculation shows that, in the physically important region, quantum defect parameters remain smoothly varying functions of energy for this system as in atomic applications, thus allowing us very coarse energy mesh calculations for the photodissociation spectra. The choice of adiabatic or diabatic potentials as reference potentials for the calculation of quantum defect parameters as done by Mies and Julienne [J. Chem. Phys., 80, 2526 (1984)] can not be used for this system. Physically motivated reference potentials that may be generally applicable to all kinds of systems are utilized instead. In principle, implementation can be done to any other predissociation processes with the same method.