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Generalized multichannel quantum defect theory [C. H. Greene et al. Phys. Rev., A26, 2441 (1982)] is implemented 

to the vibrational predissociation of triatomic van der Waals molecules. As this is the first one of such an application, 

the dependences of the quantum defect parameters on energy and radius are examined carefully. Calculation shows 

that, in the physically important region, quantum defect parameters remain smoothly varying functions of energy 

for this system as in atomic applications, thus allowing us very coarse energy mesh calculations for the photodissocia­

tion spectra. The choice of adiabatic or diabatic potentials as reference potentials for the calculation of quantum 

defect parameters as done by Mies and Julienne \J. Chem. Phys., 80, 2526 (1984)] can not be used for this system. 

Physically motivated reference potentials that may be generally applicable to all kinds of systems are utilized instead. 

In principle, implementation can be done to any other predissociation processes with the same method.

Introduction

Since its extensive development by Seaton and his cowor­

kers in the 1950s1 and reformulation by Fano and his cowor­

kers since 1970," the multichannel quantum defect theory 

(MQDT) is now established in Atomic Physics as one of 

the most general and powerful theories unifying collision 

and bound state calculations. It provides a unified treatment 

of bound and continuum wavefunctions by making 나se of 

analytic functions that can be analytically continued from 

bound to continuum regions or vice versa. It provides also 

the most general theory of resonance phenomena,4 describing 

the complicated resonance structures with a small number 

of energy insensitive parameters. Accordingly it not only sim­

plifies the task of describing the complicated resonance spec­

tra but also yields great insight into the dynamics of photo­

dissociation or inelastic processes.

However, in spite of its great promise, its application to 

molecular processes has almost been restricted to the pho­

toionization processes5 that are dominated by Coulombic in­

teraction and only slightly perturbed by the presence of com­

plicated molecular cores. For the system involving photodis­

sociation processes as parts of the whole process or as a 

whole process and thus lacking at the long-range interactions 

such as Coulombic or dipole interaction at the asymptotic 

region, only a few papers are reported so far by Giusti-Suzor 

and Jungen,6 by Mies and Julienne,7 and by Raoult.8 Among 

these, the system treated by Giusti-Suzor and by Jungen 

and Raoult involves both ionization and dissociation channels. 

Dissociation processes were not tackled directly simply by 

ignoring the coupling among dissociation channels. Such a 

coupling among dissociation channels can not be ignored in 

the present work and in Mies and Julienne's one because 

of the absence of the ionization channels. Actually, its treat­

ment is the central theme in the latter. In contrast to the 

work by Giusti-Suzor and by Jungen and Raoult, a priori 

separate treatment of the reaction and free zone and the 

analytical treatment for the free zone can not be employed 

in the present and in the Mies and Julienne's work. Numeri­

cal methods should be employed in the large R region. As 

a consequence of this, the same close coupling equation 

should be used for all the dissociation space, regardless of 

whether we are in reaction or free zone (actually, this does 

not cause much trouble as in the Coulombic case where the 

numerical treatment of the free zone is notoriously difficult 

because of the long-range nature of the potential). It could 

be anticipated that the use of the same equation for both 

reaction and free zones may make it difficult to satisfy the 

usual MQDT assumptions and pose a stringent test to 

MQDT.

Here we report MQDT calculation using the generalized 

MQDT method proposed by Greene, Rau, and Fano11 except 

that a close-coupling algorithm is 나sed at short distances 

in place of the R-matrix procedure. Their generalized MQDT 

method adopting Milne's procedure for the calculation of 

quantum defect parameters is easier to implement than the 

one by Mies and Julienne. The calculation of close-coupling 

equations at shorter distances needs only a conventional 

computer code such as De Vogelaere algorithm (this aspect 

is not much emphasized in Mies and Julienne's work). Adia­

batic or diabatic reference potentials employed in Mies and 

Julienne's work can not be used for certain channels which 

are required for the system of interest here in order to get 

the convergence in the calculation of the S matrix or other 

observables. Physically motivated reference potentials are 

used instead, still preserving the convenience. Though such 

an implementation is here limited to predissociation process­

es of triatomic van der Waals molecules, there may not 

be much difficulty in applying the same method to other 

systems.

The present work deals with the rovibrational predissocia­

tion of triatomic molecules, deviating from Mies and Julie­

nne's one which treats the predissociation of diatomic mole­

cules. As a model system, a van der Waals molecule is cho­

sen because of its weak atom-diatomic interaction potential. 

Because of its weak atom-diatomic interaction potential, the 

computational time is shorter for it than for other triatomic 

molecules. It is also a system for which true state-to-state 
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measurements9 of intramolecular energy redistribution are 

available. As this is the first of MQDT application to predis­

sociation processes, basic assumptions of MQDT, such as 

the slow dependence of the quantum defect parameters on 

energy and radius, are examined carefully. The comparison 

of the eigenphase sums obtained from MQDT with the ones 

from the close-coupling method is made as functions of chan­

nel numbers and matching radius. However, application of 

this analysis to the understanding of the final state popula­

tion distribution of the diatomic photofragment is deferred 

as future work. Infinite order sudden approximation10 (IOS) 

holds rather well for this system as w이L It may be an inter­

esting problem to see IOS from the viewpoint of MQDT. 

Its physical origin obtained by examing the short-range wa­

vefunctions will be published elsewhere.

In Section II, a summary of MQDT is given. Section IIIA 

describes the system used in this paper. Calculational proce­

dures are given in Section IIIB. The results and discussions 

are given in Section IV.

MQDT

In MQDT, the coordinate R along which fragmentation 

takes place is divided into two ranges RWRq and R〉Ro. The 

matching radius R° is usually taken so that all inelastic pro­

cesses are included in the inner space. By taking 7?0 in this 

way, motions of particles in the outer region, and thus ob­

servables, are affected by the complicated dynamics occurr­

ing in the inner region only through the values of log-deriva- 

tives of inner wave functions at the boundary. In the outer 

space, motions in the different channels are decoupled. The 

radial wavefunction E(R) for the ith channel state 恤 obeys 

the ordinary second order differential equation and is gene­

rally obtained as a linear combination of regular and irregu­

lar solutions •俄)and g«R). In MQDT, it is customary to 

consider the standing wave channel basis functions 雯，

W,(R,3)=Za>,(3)[MR)&Lg,GR)K,,], RZR。 (1)
I

wheredenotes collectively all th은 coordinates but R and 

Ka，is the real symmetric matrix. Note here that the summa­

tion index i in (1) runs over channels included in the calcu­

lations, not over open channels alone. The classification of 

closed or open channels can be made only when the boun­

dary conditions are imposed at 7?->oo and is deferred to 

the final stage in MQDT. Strong energy dependence of obser­

vables shows up around resonance and the existence of 

resonance indicates the presence of a closed channel. The 

K matrix defined in (1) is thus expected not to show strong 

energy dependence in general as boundary conditions at R 

too are not imposed yet. In other words, the K matrix in 

(1) is obtained by solving close-coupling equations from ori­

gin upto R=Rs

The regular and irregular solutions /(/?) and g(R) normali­

zed per unit energy range have the asymptotic forms for 

the open channels

僦f塚时

g瓶)t 一海(础+tv) (2) 

that clearly exhibit a singularity (branch point) at the thre­

shold owing to the factor Thus we can not analytically 

continue /(/?) and gi(R) across the threshold into the negative 

energies. Construction of an analytical12 regular and irregular 

base pair and 必(R) for the predissociation system is 

thus the starting point for any MQDT analysis, as it leads 

to a unified treatment of bound and continuum regions and 

constitues 나le core of 나le generalized MQDT of Ref. 11 and 

Ref. 7. Both base pairs have their own advantage옹. Energy- 

normalized base pair is more convenient in treating the dy­

namics at the asymptotic region while analytical one is more 

convenient around the threshold region. For the system of 

interest here where only a finite number of discrete levels 

can be supported by any particular closed channel, threshold 

regions may be no longer important as for the Coulombic 

system. Thus the energy-normalized base pair is employed 

here for the convenience (even, for the Coulombic system, 

£(R) and §(R) do not cause the singularities at the range of 

energies very close to threshold13).

The energy normalized /(/?) and g® with negative kinetic 

energies at large R have the asymptotic form14

/(/?)—> \/~~ (sinpjD,—柘더，—cos&Die ~하”)

g(R)T — J프~ (cosp/>rleK'ff-l- sinp/),e~K,R) (3) 

where D plays the role of making e±KR terms having the 

comparable magnitudes at large R, and 宙 stands for the 

accumulated phases.

MQDT now considers ** short range* channel basis func­

tions (will be labeled by a) Y% as eigenfunctions of the real 

symmetric matrix K, The eigenvalues of the K matrix are 

conveniently parameterized as tan 짜m where 卩a (or njja) are 

called eigenquantum defects (eigenphaseshifts). If we denote 

the collection of eigenvectors of K as the U matrix, then

Ka-=i' (4)
a

U is thus the transformation matrix (or sometimes called 

a frame transformation matrix) between the two basis func­

tions. The short-range wavefunctions are then given by

%=2而佃)cosnpa 一g(R)sin자虹] (5)
I

and their elation with % is obtained as

% = J^(t4aCOSn|la (6)

t

The parameters 爪以 方 and Uia in Eqs. (2), (3), and 

(4) are the whole set of parameters needed in the multichan­

nel quantum defect theory in order to describe the observab­

les such as inelastic cross sections Lone more parameter, 
the transition dipole matrix element 贝丄=(¥세呻乎a), is nee­

ded in case of photodissociation cross sections]. In the se- 

miempirical application of MQDT, short-range parameters 卩a 

and the frame transformation matrix Uia are usually assumed 

to be constant functions of energy. The energy dependences 

of the remaining parameters r* and & are known analytically 

for Coulombic and dipole (attractive) fields but should be 

calculated numerically in the absence of long-range fields 

as in the present case.



230 Bull. Korean Chem. Soc., Vol. 12, No. 2, 1991 Chun-Woo Lee

MQDT now considers energy normalized basis functions 

Wp that satisify the boundary conditions, i.e., that coefficients 

of the exponentially rising terms are zero at R—* and that 

all open channels have an identical phase rp as 也 do (the 

condition to be eigenchannels). Let Tp be given as a super­

position of Wj

%=切也&«. ⑺

a

Substituting Eqs. (3) and (5) into (7) and applying the boun­

dary conditions, we have

，：dasin(& + 짜0 = 0, : e closed channels 
a

(지如)COS(E：p) 

a

，也aSin(짜危)编=「*血(叫), i e open channels (8)

and rp replace Uia and 由 in Eq. (5) with i now running 

over only open channels at the asymptotic region. The coeffi­

cients Aap and rp can be obtained by solving the generalized 

eigenvalue equation:

TA — tannr AA (9)

with their matrix elements given by

r = ( %asin(山+지虹),
*a l%aSin(지」a),

丨 QaCOS(자』a)，

i e closed channels

i E open channels (10)

i g closed channels

i e open channels (11)

The i•이가ion between the real symmetric Ku- matrix in 

(1) and the usual reactance matrix K defined at the asympto­

tic region as following:

~셔20個)〔伸)演)K』, when RfQ (12)

is given by

一Kgn 8+K勺* (13)

where K30, K砒…,denote the open-open, open-closed.,, compo­

nent of the K matrix. The eigenvalues and eigenvectors of 

K are just tan tttp and % considered in (8).

Now wavefunctions satisfying the appropriate boundary 

conditions can be obtained as a superposition of 乎尸 For ex­

ample, V satisfying the incoming wave boundary conditions 

are given as

平-®=£9©% (14)
p

with

C 源=0-1)航-血+W (15)

Calculational Procedures

System
Empirical potentials for several van der Waals systems, 

like rare gas-halogen ones such as NeCL, HeCl2 or interhalo­

gen van der Waals molecules,15 are well established owing 

to the state-to-state measurements available for them. The

Table 1. Values of Potential Parameters Used in This Paper

(a) Morse potential parameters

Dab=0.0034 eV, D成=0.00195 eV

S=L0 a.u. \ acM=1.0 a.u.T

足이=6.82 au., Rc#=6.65 eV

(b) van der Waals potential parameters

Ceo^0.750 eV(a.u.)-6 

C62=0.119 eV(a.u.)2 

d,580 eV(a.u.)-6 

C82=0.800 eV(au)Y

interaction potential between A and B2 in the AB2 triatomic 

system used by Halberstadt et 이.技 for NeCl2 has 아】。follow­

ing form (a slightly modified form for HeCl2)

K y)=VaXR n y), when

V(R, r, y)=3R, y)+(*，一V奶，)eF稣"2,

when R次* (16)

The Jacobi coordinates R r, y in (16) denote the distance 

between A and the center of 史ass of B2f the bond distance 

of B2, and the angle between R and r respectively. 瓶 r,y) 

and V^w are given as

%R r, y) =£以旗( {exp[ - 曲(孩珀 一 成一 나? T) 

I

+ 庆M({exp[ — OcM^CMi~R이/ )]—1)2—1) (17)

扃商,丫)=-，普-'警 (18)

where R啊 is the distance between A and ith B atom, R is 

the same as above. Other parameters are constant and are 

adjusted to the best fit to the experimental values. Two Le­

gendre terms are retained for C6(y) and C8(y), e.g.,

C6(y)=Go+C62 P2(cosy) (19)

R* is chosen in Ref. 16 as the inflection point of the atom­

atom Morse potentials and is given by R*=R2・ + In (2/ 

ocm)- The values of parameters used in this paper are sligh­

tly different from those of Ref. 16 and are given in Ta비e 

1.

With this interaction potential, the Hamiltonian for the 

triatomic van der Waals molecules ABz is given by17

1 규 2 了2 ?2
H=~F 轰 +站0萨이饲 E+H" (20)

with

Hb&) = - ■誌云■春 + VB^r) (21)

Hb^t) denotes the vibrational Hamiltonian of B2, In Eq. (20) 

and (21), m denotes the reduced mass of A and the center 

of mass of B2; g, the reduced mass of B2; j, the angular 

momentum operator of B2; and I, the orbital angular momen­

tum operator of the relative motion of A and the center 

of mass of B2.
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It is known both experimentally and theoretically that^the 

magnitudes of total angular momentum operator, J=j+ I, do 

not affect the predissociation dynamics much. They will be 

set to zero hereafter. This simplifies the Hamiltonian as I 

can be set to j. When the wavefunctions '玖R, r,y) are expan­

ded in the rovibrational channel basis functions 北 y)= 

(r I v)舞丫, 0) as

职R 匕 丫)= 2七(砂©”, 丫) (22)

the close-coupling equations are given as

[-务 f汁 써8)b顷缶)

+ 刼 »咖吁(R)xw(R)=0 (23)
V']'

with

垢=2，시三一场(，+1) — (0 + $)3] (24)

and

岭泗，(R)=JdysinYjdr60 Y)卩㈤ 허;Y) (25)

In the practical calculations of K加,(k), the interaction poten­

tial is expanded into Legendre polynomials and th은 angle 

integration is performed analytically to yi사 d the formula in 

terms of 3/ symbols.

Computational Aspects of MQDT
Milne procedure. The real symmetric K matrix in (1) 

is easily obtained by simply replacing exp(± ikR) or sin 林 

and cos kjR appearing in the boundary cond辻ions at the mat­

ching radius with the energy normalized base pair 九(죠) and

The matching radius is taken to lie much insider than 

the asymptotic region. The subindex i for the coupled equa­

tion should now include both open and closed channels in 

contrast to the usual close-coupled calculation where only 

open channels are included.

The base pair /(7?) and g(R) satisfies the ordinary second 

order differential equation and thus may not be difficult to 

obtain. However, the MQDT requirement to have both regu­

lar and irregular pair at the negative energies may cause 

trouble. As the base pair is singular at Rs and irregular 

wavefunctions are singular at the origin, boundary conditions 

can not be applied to the base pair numerically at both origin 

and Rs. Thou^i conventional stable computer algorithms18 

that could overcome this difficulty exist, Milne method19 re­

commended in Ref. 11 is easy to use and very stable in 

comparison to the conventional algorithms. Milne method 

is quite stable even in the deep classically forbidden region 

and also stable to the step size. This stability derives from 

the fact that it calculates the more slowly varying functions 

of radii, Le., amplitudes and phases of the regular and ir­

regular functions, than the wavefunctions themselves. Besi­

des this advantage, Milne method allows more flexibility in 

choosing the boundary condition.

In the Milne procedure, the base pair is replaced with 

0,(7?) and <"(&) by the transformation

姒R)

务(&) = - \/争筋)。坳演)
(26)

for both positive and negative energies with。狄)given in 

terms of a, by

CR
亦(&’用' (27)

J o

By taking the lower integration limit to be zero, /(J?) and 

gi(R) are insured to be regular and irregular solutions at 

the origin. The function a, itself satisfies the ordinary second 

order differential equation

-苴謬-+威R)a依)=aJ(R)

fiKJ?)=2m[E-V^i?)J (28)

The term l當(R), called reference potential, will be discussed 

in the next subsection. The factor (2/n)1/2 in Eq. (26) ensures 

that the base pair has the value of Wronskian, 2/n, just as 

the energy normalized base pair should do. The boundary 

conditions for a(&) are such that a演)be a slowly varying 

function of R as far as possible. At the positive energies, 

such boundary conditions are obtained as

3。。一아扌% 一弩普)刍庇(R)P=o, atRT8 (29) 

uK aK

The same conditions as (29) might be obtained if 0,(/?) and 

姒R) were the amplitude and phase of the WKB wavefunc­

tion. At the negative energies, the boundary conditions (29) 

can not be applied. Applying the same kind of boundary con­

ditions at the potential minimum instead of at the asymptotic 

region, namely

a侃)大严㈤), 籍普)一一으血®)t/2=o (的)

dR dR

has proposed as a means of reducing the oscillations in cW?) 

and 0,(7?) as far as possible. (Oscillation problem may be 

severe for some systems as found in Ref. 20. In the present 

system, such a problem does not take place.) The quantum 

defect parameter & is identified in the Milne procedure 

as

田二伉心)"狀 (31)

The second order differential equation (28) and the close­

coupling equation (23) are solved by the De Vogelaere algori­

thm21 which is particularly suitable for the integration of (31) 

by a Simpson formula since it generates (자(R) not only at 

the propagation mesh points but also at their middle po­

ints.

So far we described that real symmetric K matrices can 

be obtained from the usual close-coupling computer code 

by replacing exp (± ikfi) with the base pair /■(/?) and g(R) 

and allowing i to belong to closed as well as open channels. 

This base pair, in turn, is easily obtained by the Milne pro­

cedure. The potential needed in this procedure is discussed 

in the next subsection.

Reference potentials. In case of the Coulombic sys­

tem, a potential for the calculation of £(R) and g侦)is conve­

niently chosen as 一 Z/R However in the strict sense the 

potential for the calculation of /■(??) and g〔(R) can only be 
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defined unambiguously in the interval, Or, putting 

it in another way, the choice of the potential at 7?<J?0 is 

at our disposal and does not affect the result of MQDT cal­

culation.

The different choice of potentials is utilized first by Dubau 

and Seaton22 and its significance is emphasized by Giusti-Su- 

zor and Fano.23 It is also treated in Ref. 24 in the title of 

optical potentials. It not only changes the values of long-ra­

nge quantum defect theory (qdt) parameters but also those 

of K matrix elements. The transformation formulas between 

K matrices corresponding to two different reference poten­

tials are ^ven by

X=(sinnp+cosnp K')(cos叩一 sin끼丄 7C)~1 (32)

where sinnp and cos叩 are diagonal matrices eg, sin찌知= 

sinn|i(辅 and denotes the phase shifts caused by the diff­

erence of the reference potentials.

In the system of our interest, this aspect enters into our 

consideration from the beginning since the potentials in this 

case in are given numerically and one extrapolation 

to the region of RVR。does not excel the oth은r extrapolation 

differing from the Coulombic system.

Two extrapolations using adiabatic and diabatic potentials 

may be well defined and can be utilized for any system wi­

thout arbitrariness. Diabatic and adiabatic potentials connec­

ted to [vj] fragmentation channels are defined as

成〃?)=K初 +Bj(j+l)+(v+ -|)0) (33)

and

性 (R) = 顽) + 뻐吾 +Bj(j+ l) + (i；+ (34)

where t知(R) are the eigenvalues of the hermitian matrix 

岭汹侦).However, for the system of our interest, these ex­

trapolations can not be applied since the reference potentials 

from these extrapolations may have potential minima higher 

than the predissociation resonance energies (see Figure 1 

where adiabatic or diabatic potentials connected to w = l and 

;=4 and to y=l and;—6 fragmentation channels have potential 

minima higher than the resonance energy스:0.0132 eV). Note 

that particles with negative kinetic energy in all space can 

not exist. Adding additional diagonal elements of kinetic op­

erator to the reference potentials only makes the potential 

minima higher [see Eq. (6. 15b) of Ref. 17].

One easy remedy to these potentials is to take the follow­

ing potential:

VM=V(Ji, re, Y，)+寄 +Bj(j+ D+(u+ jXo (35) 

as a reference potential in the region of R smaller than some 

radius R* and connect this to the adiabatic or diabatic poten­

tials at R七(R, re and % denote the values of R” and y 

at the equilibrium configuration of the van der Waals 

complex). The connection e.gf with diabatic potentials V^iab 

(R) corresponding to the fragmentation channel is made 

as

"티辭……摆 (36)

Figure 1. Adiabatic and diabatic potentials calculated with 8 

channels for the triatomic van der Waals system with potential 

parameters given in Table 1. Solid and dashed lines denote adia­

batic and diabatic potentials respectively. Their vibrotational 

quantum numbers v and j are shown in the Figure.

with suitably chosen constants R* and p. [If we consider 

the energy range below the minimum of Vk$ of (36), V/ostf?) 

with v-1 instead of v may be chosen.]

Other aspects of calculation. In the previous subsec­

tions, we described how to obtain a short-range K matrix 

and long-range quantum defect parameters & and m Once 

the K matrix is given, the frame transformation matrix Uia 

and eigenquantum defects 卩虹 can be obtained easily by dia­

gonalizing the K matrix. This calculation requires almost 

same computational time as that of the close coupling one. 

We repe가 this calculation for coarse energy mesh points. 

As quantum defect parameters & and 叫 and short range 

parameters pa and frame transformation matrices are expec­

ted to be slowly varying functions of energy, their values 

at energies off the mesh points can be obtained quite accura­

tely by interpolation. Here, interpolation is performed by a 

cubic spline fit at each energy mesh point. A computer code 

for the cubic spline fit may be obtained in the standard 

math-libraries like IMSL, NAG, Numerical Recipes. With this 

interpolation, we can solve the generalized eigenvalue equa­

tion (9) at any energies. The computational time for the in­

terpolation and the generalized eigenvalue problem can be 

neglected in comparison with that of the close coupling cal­

culation. Thus by this MQDT calc니ation with the coarse 

energy mesh points we can save a lot of computational time.

Results and 머scussion

As we said easier in Section II, in the Coulombic system, 

most of inelastic processes take place in a very small region 

of space. In that region, potential energies for the relative 

motion of particles are so big that the magnitudes of kinetic 

energies do not vary much as functions of energy of the 

system. Elastic processes occurring in the region outside J?o 

are dominated by the long-range Coulombic potential and
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Figure 2. Short-range eigenquantum defects vs energy in the 
6 channel calculation: (a) for Ro=4 A; (b) Ro=4.5 A; (c) J?0=5 A.

their phase shifts & and 邛 defined in (2) and (3) can be 

obtained analytically through the energy-normalized base 

pair /(/?) and gi(R).

It the zero field case like the triatomic van der Waals 

molecular system of our interest here, on the other hand, 

analytical formulas for the elastic processes occurring in the 

region outside Rq are not available. Besides, qdt parameters 

pi and T]i for the elastic processes accrue their values from 

the same kind of the short-range potential as K matrices 

for the inelastic processes do. Therefore, locating the ma­

tching radius Rd may be a more serious problem here than 

in the Coulombic system. [The motion of the van der Waals 

system is mostly dominated by an atom-additive Morse po­

tential (17), hardly being affected by a long-range van der 

Wrals interaction Vvdw^ Accordingly, quantum defect parame­

ters p,- and T], accrue most of their values in the range of 

small radius because of the short-range nature of the poten­

tial (17).] It is thus quite possible that more energy sensitive 

phenomena taking place in the range of R, where the kinetic 

energy of the relative motion has a comparable size to the 

energy of the system, may already start from the small value 

of R at which channel couplings may no longer be ignored. 

If this is the case, the K matrix that incorporates the channel 

coupling effects may show a rather strong energy dependen­

ce. Thus, it is imperative to test carefully in the zero fi이d 

case one of the fundamental tenet of MQDT that the real 

symmetric K matrix, eigenquantum defects & and the frame 

transformation U matrix be slowly varying function of energy 

at the radius where the convergence of their values obtains. 

In subsections A through D, such an assumption will be tes­

ted.

Energy dependence of U matrices and 3 In Figure 

2, a comparison of energy variations among 曲 is made for 
different values of &=4 k, 4.5 A and 5 A. The reference 

potentials are the ones connected to the adiabatic potentials 

(will be simply called adiabatic reference potentials if no 

confusion arises). The connection parameters 7?*=3.75 A and 

p=50 are used for the reference potentials and calculations 

are performed with 6 channels,切=0 and j=0, 2, 4} and 
{〃 = 1 and 0, 2, 4}. At R=4 A, the short range quantum­

defects 卩a vs. energy are almost straight lines with small 

slopes. As the matching radius J?o becomes larger, three 

among six curves in Figure 2 remain unaltered while the 

other three undergo changes in the shapes and magnitudes. 

Evidently, the former unaltering curves have mostly open 

channel contents. Larger Rq bring about more avoided cross­
ings. Convergence in jju obtains at R츠;7 k. Figure 2 shows 

that no avoided curve crossings are observed for R)=4 A, 
one avoided crossing at Er0.014 eV for R)=4.5 A, and four 

at &*0.0132흥 0.0142, 0.01475, and 0.0150 eV for R°=5 A. 
For 2?o=4.5 A and 5 k, Figure 3 shows the great changes 

in the U matrix elements as functions of energy around the 

avoided curve crossings. [Here it is not utilized that only 

NQN—1)/2 among N2 elements of the real U matrix (N deno­

tes the number of channels) are independent because of the 

unitary relation among them. Instead, all N2 matrix elements 

are plotted for brevity at the cost of the overlapped display 

of information. For two channel case, however, its utilization 

does not pose any difficulty and a single parameter, the mix­

ing angle, is usually plotted in place of 4 matrix elements.]

Also Figure 2 shows the curve crossing besides avoided
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Hgure 3. U matrix elements vs energy in the 6 channel calcula­
tion with (a) R)=4 A, (b) Ro=4.5 A, (c) R)=5 A.

0.0139 0.0140 0.0145 0.0150 0.0153
energy (eV)

Rgure 4. U matrix vs energy in the 8 chann이 calc니ation with 
7?o=4.5 A.

curve crossings, e.g.t at £ % 0.013 eV forR=5 A. Only a slight 

changes in U matrix elements are observed at the crossing 

points in Figure 3 in great contrast to the big changes 

around avoided curve crossings. While avoided crossings ac­

company changes in the nature of the short range channel 

wavefunctions, curve crossings without avoidance are not 

seen to lead to significant consequences.

For the reference potentials connected to the diabatic po­

tentials, the short range quantum defect parameters 卩a con­

verge slowly to the limiting values. The limiting values are 

common to both adiabatic and diabatic ones. They approach 
to 나｝e limiting values slowly up to k, fast at 5

A and then converge to limiting values. Eigenquantum defe­

cts ga and Uia vary as functions of energy slightly slower 

for these diabatic potentials than those for the adiabatic ones. 

As far as their values at small Ro deviate from their limiting 

values more than those for the adiabatic reference potentials, 

and as far as the small Rq are important regions for MQDT 

calculations as Uia vary slowly there, there may be no point 

to consider the diabatic reference potentials. However, it 

practically yields better results than the adiabatic one. This 

point will again be considered in the later section.

If more channels are included into the calculations, stron­

ger dependence of |ia and Uia on energy results in. In Fi­

gure 4, the effect of the number of channels is considered. 
U matrix elements at R)=4.5 k for 8 channel case show 

stronger energy dependence than for the 6 channel case. 

One more avoided curve crossing is observed for the former 

than the latter. For the van der Waals system, stronger en­

ergy sensitivity of 曲 and Uia to the number of chamois may 

be expected since the potential minima of the pure adiabatic 

or diabatic potentials become quickly higher as seen in Fi­

gure 1.

Energy dependence of 田 and x\t. QDT parameters 

& and 1), are shown in Figure 5 for the 8 channel case. 

They are smoothly varying functions of energy. Figure 5 

shows that the rate of variation of p, on energy is slower 

than the Coulombic ones,田=71(由一 1).
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channel calculation.

Consideration on the basic tenet of MQDT. The 

previous subsection IV. A shows the break-down of one of 

the fundamental assumptions of MQDT. Short-range qdt pa­

rameters 卩a and Uia are found to be no longer slowly varying 

functions of energy at the radii of convergence of qdt para­

meters. The radius Ro for the convergence of 心 and [/Ia 
i옹 about 8 A for the diabatic reference potentials and smaller 

for the adiabatic ones. The rapid variation of Uia on energy 

is observed in that radius. The energy variation is much 

slower for 心 than for Uia at this range of R. [Recall, how­

ever, that the rapid variation observed at the frame transfor­

mation matrix [/ as a function of energy is caused by the 

avoided curve crossings in the eigenquantum defects 山!. This 

implies that the energy variation of K matrix its이f is some­

what similar to or slower than that of The difference 

is in that curves are simply crossing in the K matrix while 

avoided in |如(the channel interactions bring about the avoid­

ed curve crossings in(% and the rapid variations in Uia 

at the curve crossing points in the matrix elements of K). 

Thus at the radius of convergence, the K matrix itself re­

mains as a slowly varying function of energy].

It may not be wanted that the nature of the short-range 

channel basis functions undergoes several drastic changes 

as exhibited in the energy variation of U matrix elements 

at the radius of convergence. Such a rapid variation of the 

U matrix as a function of energy does not necessarily reflect 

the change in the short-range frame wavefunctions as it en­
ters at the region of R, 5 kVRMi A. Rather, it reflects the 

fact that energy sensitive dynamics occurring at 5 
A may affect the energy variation of U matrix much more 

here than in the Coulombic system as they begin to be inclu­

ded inside Ro more and more. This implies that the MQDT 

framework described in Section II has to be reluctantly app­

lied at Rq smaller than the radios of convergence, where 

the ^-dependence of the K matrix can not be ignored. If 

the Rq dependence of the K matrix can somehow be incorpo­

rated into the framework of MQDT, more flexibility in choo­

sing Ro may result in and 7?0 could be chosen as small as 

possible in order to drastically reduce the variation of U 

as a function of energy.

Calogero25 long ago showed that K matrices satisfy Ricatti- 

type first-order nonlinear differential equations, alternative 

but equivalent to the close-coupling equation (similar work 

has appeared independently in different applications).26 Note 

that the way by which the K matrix is obtained makes use 

of the same restrictions imposed in the Calogero method. 

In the K matrix calculation, arbitrary boundary conditions 

are imposed at the starting radius and solutions are propaga­

ted along R with the De Vogelaere algorithm. Then true 

wavefunctions are obtained by correcting this arbitrariness 

by imposing the restrictions (1) and

些씅® =g)【쐐普 &L 粤羿&'(耽 (37)

dix. I uJ\ da

at R=Rq with the allowance of 7?-dependence of the K mat­

rix. This is the one of the several restrictions considered 

in the Calogero method. Further consideration on this point 

is beyond the scope of this paper.

In the next subsection, we present the simple calculation 

that ignores the R dependence of the K matrix and that 

solves Eq. (9) by inserting the values of ga and Uia by taking 

Ro smaller than the radius of convergence. This simple cal­

culation may not be quite bad since the ^-dependence of 

the K matrix is still far smaller than those of and g(&). 

As it turned out, a good agreement of this simple calculation 

with close-coupling results is obtained, indicating that such 

a R dependence may not be quite critical.

Comparison of MQDT and close coupling calcula­
tions. Here we will compare MQDT calculations with the 

close coupling ones. The eigenphase sum of the S matrix 

is real and shows the resonance 마ructure as proved by Hazi27 

and thus may be conveniently used for the comparison pur­

pose in place of the complex-valued NXN S matrix elements 

themselves. The eigenphase sum o of the S matrix is defined 

as the halfsum of the phases of the eigenvalues of the S 

matrix
No

b=2 爲 (38)
a- 1

with 8a defined by

&‘= £ Viae^aVj (39)

a=l

where Via is the unitary matrix made of the eigenvectors 

of the S matrix and No is the number of open channels. 

The S matrix is here defined for the wavefunctions that 

satisfy the incoming wave boundary conditions i.e.

3)=20,(3)[e'허说L eT*S"[ (40)

i

The wavefunctions co) are obtained as a superposi­

tion of Wp in MQDT, as considered in Eq. (14) with coefficie­

nts given by (15). Then the S matrix in the MQDT can be 

c이culated from the fomnila

S„' = _厂血27丄£—2而应、村、1厂如 (41)

p

(S matrices may be defined so that its eigenphase i요 given 

by 2nrp instead of — 2jttp. This point has not been pursued 

further here as such a sign difference has no physical signifi-
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0.0135 0.0140 0.0145 0.0130 0-6195
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Figure 6. The comparison of eigenphase sums vs energy calcu­

lated by MQDT and close-coupling method for 6 channels:—, 
MQDT with &=4 k …，MQDT with R°=4.5 A; 一，MQDT 

with 7?o=5 A;--- , MQDT with R)=6 A; —-一，close coupling.

cance.)

Figure 6 compares the eigenphase sums (divided by 까 

obtained from 6 channel MQDT calculation with that of the 

close coupling one. Vios is here connected to the adiabatic 
potentials with R*=3.75 A and p=50. Quite remarkably, the 

background spectrum is already obtained at R)=4 kt namely, 

around the minima of the reference potentials. The first and 

second resonances located at ErO.O 13417 eV and 0.0156 eV 

are found at the shifted positions of 0.0135 and 0.0158 eV 

respectively, though. However, it is quite remarkable that 

such amounts of agreements obtain with only 2 energy mesh 
point calculation. With larger &= 4.5 A, we get better agree­

ment on the resonance positions. The calculation can still 

be done with only a few mesh points if the energy is not 

close to the avoided curve crossing points. But even at the 

vicinity of avoided curve crossing points, we can do a very 

coarse mesh-point calculation. It is found th거 more coarse 

mesh-point calculations are possible with diabatic reference 

potentials. Even better agreements with close-coupling re­

sults can be anticipated and are obtained with larger R手 More 

energy mesh points are, however, required for larger Rq, 
though the number of points still remains quite small in 

comparison with the close-coupling calculations.

Figure 6 also shows that the spectrum at the higher ener­

gies is more sensitive to the choice of 7?0. This implies that 

more and more contributions to the eigenphase sums come 

from larger values of R with increase of energy. This point 

can be further confirmed by comparing two MQDT calcula­
tions with the better connection parameter, (R후, p)=(3,85 k, 

50), and the poorer one, (4 A, 25). For the latter, the portion 

of Vjqs in the reference potentials still survive and become 

excessive at large R where the adiabatic potentials are quite 

good representations of the true potentials. This persistence 

of Vios at large R only affects the higher energy spectrum.

The close-up of the region around the first resonance posi­

tion is shown in Figure 7. It again confirms the general trend

0.011M5 0.O1MM 0.013«M OIMIO 
•nergy (W)

Figure 7. The comparison of eigenphase sums t盾 energy calcu­

lated from MQDT with close-coupling calc니atkms for 6 channels 

in the vicinity of the first resonance. Solid and dashed lines 

denote MQDT calculations with adiabatic and diabatic reference 

potentials respectively. The peaks from the left correspond to 

Ro=4, 4.5, 5, and 6 A calculations for each adiabatic or diabatic 

potentials respectively. MQDT calc비ation for R°=6 A is almost 

identical with the close-coupling one.
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Figure 8. The comparison of eigenphase sums vs energy calcu­

lated from MQDT and close-coupling calculations with infusion 
of 8 channels: —, MQDT with Ho=4 A，…，MQDT with &°=4.5 

A;--- , MQDT with R=5 A; —, close coupling.

that larger matching radius yields better results. One of 

the interesting features of Figure 7 is that better results 

are obtained with diabatic reference potentials than with 

adiabatic ones. Note in Figure 7 that the resonance shapes 

are much more insensitive to Rq and to the reference poten­

tials than the resonance positions are.

Figure 8 shows the calculations with 8 channels that are 

almost enough number of channels to get the converged ei- 
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genphase sums. Reference potentials connected to the diaba­

tic ones are used for the calculation of the base pair. Identi­

cal values of R* and p are employed for the reference poten­

tials in these calculations as in the 6 channel case. Again 

the agreement of MQDT calculations with close-coupling 

ones is excellent for larger R()and is good even for R=4 
k, though generally slightly poorer than the agreement in 

the 6 channel case. The discrepancies in the background 

spectrum and in the second resonance between two calcula­

tions are bigger here than the ones in the 6 channel calcula­

tions. This indicates that 8 channel calculations are more 

sensitive to the quality of reference potentials. Better agree­

ment is expected to result in with the better reference poten­

tials constructed with smaller R* and larger p. This refine­

ment is no further pursued in this work. Also, it is noted 

that the first resonance in the 8 channel calculation is of 

almost Lx)rentzian shape in contrast to the more asymmetric 

one in the 6 channel calculation.

Comparison between 6 and 8 channel calculations seems 

to suggest that the excellent result of the MQDT calculations 
with 棗=4 A may not be an accidental one since the eigen­

phase sum undergoes a change more drastically with the 

change of channel numbers than with the change of Ro. This 

seems to imply that the decoupling of the close-coupling Eq. 

(23) already takes place at 4 A. This interpretation may 

not be quite absurd for the system of triatomic van der 

Waals predissociation since another very good approximation, 

IOS, for this system also assumes a decoupling in y motion 

for all range of R. This point is further supported by the 

analysis in Section IV. A, as mentioned in Section IV. B.

The small Ro, such as 4 A, calculation actually shows the 

complete disentanglement of the short-range from the long- 

range dynamics. The emergence of the strong energy depen­

dence in the frame transformation U matrix at larger R) 

shows up the entrance of the long-range (though not quite 

long-range) strong energy dependence into the U matrix 

from the large RQ region. The improvement is obtained only 

in the finest points with the in시usion of the range of large 

R into the K matrix in order to get the convergence of the 

K matrix. However, for the complete assessment of this phe­

nomena, the theory of MQDT with the allowance of ^-depe­

ndence into the K matrix should be developed further in 

the future. (The curve crossings that cause the rapid energy 

dependence may be lessened by making use of the analytic 

base pair f and g°).

Summary and discussion. Generalized MQDT formu­

lated in Ref. 11 is implemented into the triatomic van der 

Waals predissociation process. In the implementation, we 

have tried from the outset to avoid specific assumptions 

usually practiced in numerous MQDT applications so that 

the method can be applied to any other systems by simply 

changing the potentials without touching the other part of 

the computer codes.

It turned out that the problem of choosing Ro can not 

be ignored in the system of van der Waals predissociation 

system. This urges us to generalize MQDT further to allow 

the l?o'dependence of the K matrix.

Nevertheless, as a first approximation, we solved MQDT 

equation with neglect of the 7?0-dependence of the K matrix. 

The agreement of MQDT and the close-coupling calculations 

is excellent, indicating that ^-dependence of the K matrix 

may not be crucial. Also the study on the energy dependen­

ces of the short-range qdt parameters and of the frame trans- 

form잤ion matrix on Ro reveals that the complete separation 

of energy sensitive and insensitive contributions obtains at
A. More energy sensitive contributions enter at 4.5 

XZR으I A. In such an energy sensitive range, abrupt changes 

of the frame transformation matrix are detected around the 

avoided curve crossing points while eigenquantum defect cu­

rves 卩 are slowly avoiding each other. This observation 

shows one of the flexibility of MQDT calculation how we 

can avoid such an abrupt change in the frame transformation 

matrix by simply choosing i?0 smaller.

More energy sensitivity enters into MQDT calculations 

with more channels. In the potenti자 parameters listed in 

Table 1, the convergence in the calculation is obtained with 

8 channels. More channels will participate with the increase 

of the anisotropy and the reduced mass in the triatomic van 

der Waals system, narrowing the range of we can choose. 

However, the sensitivity of MQDT calculations to the number 

of channels observed in this paper seems to be the characte­

ristics of the van der Waals predissociation system. Figure 

1 shows how the minima of adiabatic or diabatic potentials 

move fast higher. For the H2O system in its second absorp­

tion band, that occurs to a much less extent. Also, the sys­

tems used by Ref. 7 do not show such characteristis. This 

consideration indicates that experiences of the application 

of MQDT to more variety systems are called for in the fu­

ture.
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