• 제목/요약/키워드: energy performance evaluation

검색결과 1,884건 처리시간 0.031초

재난 시 대응을 위한 Flexible-Unit형 인프라 프리(임시)주거의 성능평가 (Evaluation of Residential Performance in Commercialization of Flexible Unit Infra Free Residential for Disaster)

  • 박병용;조진균;정용대;이원학
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.37-49
    • /
    • 2018
  • In this paper a new kind of unit-prefabricated building is shown. The unit-prefabricated buildings are made up living unit, energy unit, water unit. The design trend implemented the energy insulation, solar PV panels, energy storage system which are maintained for zero energy buildings. We made a prototype for zero energy flexible residential unit. The first step, we was evaluated the physical performance, insulation, airtightness. The second step, we was evaluated energy performance building to design heating and cooling system to combined PV system. As a results, the insulation performance wall was $0.18W/(m^2{\cdot}K)$. The results of air-tightness was 12.13 ACH@50 (1/h). The building energy demand ratings and solar energy generation has the possible to be ballanced.

창호의 성능인증 규격 기준과 면적 변화에 따른 에너지성능 비교분석 (A Comparative Analysys of Window Energy Performance According to the Difference Between Actual size and Standard size)

  • 김성범;이수열;김동윤;최원기
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.49-60
    • /
    • 2020
  • This study reviewed selected specific windows and reviewed the window performance certification criteria including KS F 2278 and KS L 9107 and analyzed the change in performance based on the change of area. This study also compared the heating and cooling loads of an apartment house applied with window performance reviewed in consideration of insulation and SHGC performance and actual size based on KS F 2278. The analyzed window was a double window composed of aluminum and PVC and the building was the apartment house model of 141 ㎡. The analysis results were as follows. First, as the window glass's thermal performance is superior to frame, the performance degraded in reduced area. In case of selected window, the 1 m × 1m window's thermal performance and SHGC decreased by 35% and 37% respectively compared to 2 m × 2 m window. Secondly, in the comparison of performance for increasing area with 2 m × 2 m and 3 m × 3 m windows, the 3 m × 3 m window's thermal performance and SHCG increased about 14%. Third, in the comparison of heating and cooling loads of the analyzed model considering the apartment house model applied with window performance derived from KS F 2278 and actual figures, the model's total heating and cooling loads increased by 33% with cooling decreasing by 36% and heating increasing by 77%. Above analysis results show that evaluation of window performance based on criteria such as KS F 2278 and KS L 9107 may lead to distortion of performances different from actual products. Thus, it is necessary to suggest new evaluation criteria.

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • 제7권2호
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • 제32권2호
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

A New LMR SG with a Double Tube Bundle Free from SWR

  • Sim Yoon-Sub;Kim Seong-O;Kim Eui Kwang;Hahn Do Hee
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.566-580
    • /
    • 2003
  • To resolve the concern of the SWR possibility in LMR and improve the economic feature of LMR, relative performance of various SG designs using a double tube bundle configuration is evaluated and a new SG design concept is proposed. The new steam generator design houses two tube bundles that are functionally different and its tube bundle region is radially divided into two. It prevents the occurrence of sodium water reaction while sodium is still used as the coolant for the primary heat transport system. The feasibility of the SG with a double tube bundle for actual use in an LMR plant is evaluated by setting up the skeleton of the NSSS for various possible configurations of the SG tube bundles. The evaluation revealed the relative advantages and disadvantages of the configurations and the new SG design concept performs good and can be actually used in an LMR plant.

창호 성능 개선을 위한 에어캡 탈부착형 모듈 개발 (Development of detachable air-cap module for improving the performance of windows)

  • 서범동;이행우;서장후;김용성
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.63-68
    • /
    • 2017
  • Purpose: Various studies to solve the problem of increased energy consumption in the buildings are being carried out recently. Especially, the economic feasibility and insulation performance of the air-cap have been verified so that various studies regarding the reduction of building energy consumption have been carried out. However, previous studies regarding the air-cap were only carried out based on the verification of its insulation performance according to the size and attachment position of the air-cap. Therefore, the purpose of this study is to suggest a detachable air-cap module for improving the performance of the windows, evaluate the performance based on cooling, heating and light environments and verify its effectiveness through a real-scale testbed. Method: In this study, the energy saving performance in the circumstance where there is no attachment of an air-cap (Case 1), the circumstance where there is the attachment of air-cap on the glass surface of window (Case 2) and the circumstance where there is the attachment of an air-cap on the window frame (Case 3) were compared in order to verify the performance of the detachable air-cap module (Case 4), and the electricity consumption of cooling, heating and lighting equipment to maintain the appropriate indoor temperature and Illuminance for each case was calculated and utilized as indicators for the performance evaluation. Result: The result of this study is as follows. 1) In this study, the detachable air-cap module which was easily detachable through the principle of the magnet was suggested. 2) When Case 4 is applied, the electricity consumption of cooling and heating equipment can be reduced by 27.5%, 13.2% and 3.4% in comparison with Case 1, Case 2 and Case 3 respectively. 3) When the air-cap is applied to the window, the lighting energy consumption increases by 4 % in comparison to the non application of the air-cap, and this factor or aspect should be considered when applying the air-cap. 4) According to the performance evaluation result in consideration of cooling, heating and light environments, Case 4 demonstrates an energy saving ratio of 22.6%, 10.6% and 2.7% in comparison to Case 1, Case 2 and Case 3 respectively, indicating that it is effective for improving the performance of windows.

착상을 수반한 핀-관 열교환기의 성능평가계수에 관한 연구 (The Study of Performance Evaluation Coefficient of Fin-and-Tube Heat Exchangers with Frosting)

  • 최봉준;황준현;신종민
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.132-136
    • /
    • 2003
  • For the study of performance evaluation on different shape heat exchangers that have the same energy consumption in a refrigerator, we make performance evaluation coefficient (PEC) which can distinguish performance of different shape heat exchangers. The results were reported in order to compare with for the dry frosting and wet frosting test as various definition of PECs. Results showed that PEC of dry frosting test is higher than that of wet frosting test because attached water droplet increases pressure drop of air-side then this decreases performance of heat exchanger.

전문 ESCO 지정제 평가방안 연구 (A Study on the Evaluation Method for Professional ESCO)

  • 임기추
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.90-95
    • /
    • 2013
  • 기술 중심의 ESCO 전문화를 위한 전문 ESCO 지정제 평가기준 마련이 요청되어 왔다. 이에, 본 연구는 전문 ESCO 지정제도에 관한 평가기준을 설정하기 위해 5가지 목적을 전제하였다. 즉, 에너지 절감의 우수성, 경영지표의 건전성, 고객만족도, 원천기술 보유업체의 참여 유도, 절약성과 보증계약 중시 등이다. 이를 바탕으로 전문가 자문을 통해 전문 ESCO 지정을 위한 평가배점(안)을 전문성(40점), 경영상태(15점), 고객만족도(20점), 기술능력(25점) 등 평가지표로 구성하고, 각각 세부 평가항목의 선정 및 배점기준을 설정하였다. ESCO 업계 설문조사를 통해 비교적 높은 동의율을 보였다. 전문 ESCO 지정제도의 적용 시 기업규모를 중소기업으로 한정하고 적용기술 대상을 조명, 열병합발전, 공정개선, 폐열회수, 냉 난방설비 등 5개의 특정 기술분야로 지정하는 것이 가능할 것이다.