• 제목/요약/키워드: energy optimization

검색결과 2,423건 처리시간 0.036초

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Improvement and validation of aerosol models for natural deposition mechanism in reactor containment

  • Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2628-2641
    • /
    • 2023
  • Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.113-120
    • /
    • 2023
  • 스마트 팜은 IoT 기술과 인공지능 기술이 접목되면서 농작물에 투입되는 노동력·에너지·양분 등을 최소화는 연구가 꾸준히 증가하고 있는 상황이다. 그러나, 스마트 팜에서 농작물의 생육 정보를 효율적으로 관리하는 연구는 현재까지 미진한 상태이다. 본 논문에서는 스마트 팜에 자율 센서를 적용하여 농작물의 생육 정보를 효율적으로 모니터링할 수 있는 관리 기법을 제안한다. 제안 기법은 농작물의 생육 정보를 자율 센서를 통해 수집한 후 생육 정보를 농작물 재배에 재활용하는데 초점을 갖는다. 특히, 제안 기법은 농작물의 생육 정보를 한 슬롯으로 할당한 후 로드밸런싱을 수행하도록 농작물별로 가중치를 부여하며, 농작물의 생육 정보 간의 간섭을 서로 최소화한다. 또한, 제안 기법은 농작물의 생육 정보를 4단계 (센싱 탐지 단계, 센싱 전송 단계, 애플리케이션 처리 단계, 데이터 관리 단계 등)로 처리할 때, 농작물의 중요 관리점을 실시간으로 전산화하기 때문에 관리 기준 이외의 경우에는 즉각적인 경고 시스템이 동작한다. 성능평가 결과, 자율 센서의 정확도는 기존 기법보다 평균 22.9%의 향상된 결과를 얻었으며, 효율성은 기존 기법보다 평균 16.4% 향상된 결과를 얻었다.

해양 탄소중립 실현을 위한 디지털 플랫폼 개발 (Development of a Digital Platform for Carbon Neutrality in the Ocean)

  • 양영훈;박진형;조득재
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.317-318
    • /
    • 2022
  • 전(全)세계적인 탈탄소화에 따라 그린에너지로의 전환 가속화를 위한 디지털트윈을 활용한 최적화 및 생산성 향상 모색하고 있으며, 주요국은 미래 핵심기술로 디지털트윈을 선정하여 선박 및 해양에너지 운용 최적화를 위한 SW 개발 등 경쟁이 가속화 되고 있음. 국제적으로 탄소 배출량에 대한 규제 강화로 선박의 운영비용 절감 및 조선 산업의 경쟁력 강화를 위해서는 선박의 탄소배출량 사전 예측 및 탄소저감 운항 솔루션을 위한 선제적 대응이 필요함. 이를 위해 선박해양시스템의 탄소 투명성 확보를 지원하는 개방형 디지털 플랫폼 기술 개발 및 환경 구축에 대한 기획을 수행하였음

  • PDF

표적 알파 치료의 현황 및 유용성에 대한 임상적 고찰 (Clinical Review of the Current Status and Utility of Targeted Alpha Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권5호
    • /
    • pp.379-394
    • /
    • 2023
  • Targeted Alpha Therapy (TAT) is a new method of cancer treatment that protects normal tissues while selectively killing tumor cells using high cytotoxicity and short range of alpha particles, and target alpha therapy is a highly specific and effective cancer treatment strategy, and its potential has been proven through many clinical and experimental studies. This treatment method accurately delivers alpha particles by selecting specific molecules present in cancer tissue, which has an effective destruction and tumor suppression effect on cancer cells, and one of the main advantages of target alpha treatment is the physical properties of alpha particles. Alpha particles have a very high energy and short effective distance, interacting with target molecules in cancer tissues and having a fatal effect on cancer cells, which is known to cause DNA damage and cell death in cancer cells. TAT has shown positive results in preclinical and clinical studies for various types of cancers, especially those that resist or are unresponsive to existing treatments, but there are several challenges and limitations to overcome for successful clinical transition and application. These include the provision and production of suitable alpha radioisotopes, optimization of target vectors and delivery formulations, understanding and regulation of radiological effects, accurate dosage calculation and toxicity assessment. Future research should focus on developing new or improved isotopes, target vectors, transfer formulations, radiobiological models, combination strategies, imaging techniques, etc. for TAT. In addition, TAT has the potential to improve the quality of life and survival of cancer patients due to the possibility of a new treatment for overcoming cancer, and to this end, prospective research on more carcinomas and more diverse patient groups is needed.

익형 형상을 적용한 레저 선박용 안전 덕트 개발 (Designing of Safe Duct for Leisure Boat with Wing Section)

  • 박상준;김진욱;김문찬;진우석;정사교
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.424-432
    • /
    • 2023
  • This study deals with the design of a safety device around a leisure boat propeller. The safety device is to be designed to minimize performance degradation attached to propulsors in coastal waters. These devices, important for preventing propeller accidents, negatively gives influence boat performance, especially at higher speeds. In order to minimize the negative effect, the accelerating ducts, normally used in ESDs (Energy Saving Devices) have been chosen as a safety device. The present study aims to design an optimal duct (minimizing negative effect) through the parametric study. Based on the Marine 19A nozzle, the nozzle's thickness and angle were varied to obtain the optimum parameter in the preliminary design by the computational fluid dynamics program Star-CCM+ Ver. 15.02. In the detailed design, a NACA 4-digit Airfoil shape resembling the Marine 19A by modification at the trailing edge was chosen and the optimum shape was chosen according to variation of camber, thickness, and incidence angle for optimization. The optimally designed duct shows a speed decrease of about 10% in the sea trial result, which is much smaller than the normal speed decrease of at least 30%. The present designing method can give wide applications to the leisure boat because the wake is almost the same due to using the outboard propulsor.

고온수성가스전이반응 적용을 위한 Cu-CeO2-MgO 촉매의 제조방법 최적화 (An Optimization of Synthesis Method for High-temperature Water-gas Shift Reaction over Cu-CeO2-MgO Catalyst)

  • 전이정;김창현;심재오
    • 청정기술
    • /
    • 제29권4호
    • /
    • pp.321-326
    • /
    • 2023
  • 최근 탄소중립과 관련하여 연소 시 이산화탄소 배출이 없어 청정한 수소에너지에 대한 관심이 증가하고 있다. 이에 따라 수소 생산에 관련된 연구가 계속되고 있으며 본 연구에서는 폐기물을 처리함과 동시에 고순도 수소를 생산하기 위해 폐기물 유래 합성가스를 수성가스전이반응에 적용하였다. 마그네슘을 세륨과 함께 지지체로 사용하여 고온수성가스전이(HT-WGS)반응에서 촉매의 활성을 향상시키고자 하였다. HT-WGS 반응의 활성물질로 구리를 사용해 Cu-CeO2-MgO 촉매를 제조하였으며, 제조방법에 따른 촉매활성 연구를 진행하였다. HT-WGS 반응 결과 함침법으로 제조된 Cu-CeO2-MgO 촉매가 가장 높은 활성을 보였으며, 이는 가장 높은 산소 저장능과 많은 활성 Cu 종을 가지는 특성에 기인한 결과이다.

안전한 항공기 운항을 위한 현업 전지구예보모델 기반 깊은 대류 예측 지수: Part 1. 개발 및 통계적 검증 (Aviation Convective Index for Deep Convective Area using the Global Unified Model of the Korean Meteorological Administration, Korea: Part 1. Development and Statistical Evaluation)

  • 박이준;김정훈
    • 대기
    • /
    • 제33권5호
    • /
    • pp.519-530
    • /
    • 2023
  • Deep convection can make adverse effects on safe and efficient aviation operations by causing various weather hazards such as convectively-induced turbulence, icing, lightning, and downburst. To prevent such damage, it is necessary to accurately predict spatiotemporal distribution of deep convective area near the airport and airspace. This study developed a new index, the Aviation Convective Index (ACI), for deep convection, using the operational global Unified Model of the Korea Meteorological Administration. The ACI was computed from combination of three different variables: 3-hour maximum of Convective Available Potential Energy, averaged Outgoing Longwave Radiation, and accumulative precipitation using the fuzzy logic algorithm. In this algorithm, the individual membership function was newly developed following the cumulative distribution function for each variable in Korean Peninsula. This index was validated and optimized by using the 1-yr period of radar mosaic data. According to the Receiver Operating Characteristics curve (AUC) and True Skill Score (TSS), the yearly optimized ACI (ACIYrOpt) based on the optimal weighting coefficients for 1-yr period shows a better skill than the no optimized one (ACINoOpt) with the uniform weights. In all forecast time from 6-hour to 48-hour, the AUC and TSS value of ACIYrOpt were higher than those of ACINoOpt, showing the improvement of averaged value of AUC and TSS by 1.67% and 4.20%, respectively.

정지궤도위성 발사위치와 궤도투입에 관한 고찰 (Geostationary Satellite Launch Site and Orbit Injection)

  • 김동선
    • 항공우주시스템공학회지
    • /
    • 제18권3호
    • /
    • pp.27-33
    • /
    • 2024
  • 누리호의 성공과 차세대 우주발사체의 개발 목표를 통하여 국내 정지궤도위성 발사능력은 1톤에서 3.7톤으로 향상될 것으로 기대되며 화성, 소행성 등의 우주탐사에도 1톤 이상의 실질적인 능력을 제공해 줄 수 있을 것으로 예측된다. 고흥 우주발사장은 태양 동기궤도 소형위성에 최적화되어 있으며 타국의 영공을 침범하지 않아야 된다는 필수적인 전제조건으로 인하여 정지궤도위성 발사장으로는 다소 부족한 면이 존재한다. 초기 궤도 투입상태로부터 궤도면 회전을 위한 에너지의 증가가 필수적이며 운용 측면에서의 복잡성과 함께 경제성의 감소요인이 된다. 그러므로 차세대 우주발사체의 개발과 병행하여 지구 적도부근의 해외 지상발사장 또는 해상발사지점의 획득과 최적화된 정지궤도위성 투입에 관한 궤도 구성에 관한 연구가 계속되어야 한다.