• Title/Summary/Keyword: energy meter

Search Result 358, Processing Time 0.023 seconds

A Sensitive Detection of Actinide Species in Solutions Using a Capillary Cell (모세관 셀을 이용한 수용액 내 악티나이드 화학종의 고감도 검출)

  • Cho, Hye-Ryun;Park, Kyuong-Kyun;Jung, Euo-Chang;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.109-114
    • /
    • 2009
  • Absorption spectra for a quantitative analysis of actinide elements such as U(VI) and Pu(V) were measured by using a liquid waveguide capillary cell (LWCC) which has an optical path length of 1.0 meter. In order to investigate radioactive elements, a LWCC is installed in a glove box and is coupled to a spectrophotometer with optical fibers. Limits of detection (LOD) for the system were determined as 0.74 and 0.35 M with molar absorption coefficients of 8.14${\pm}$0.07 (414 nm) and 17.00${\pm}$0.16 (569 nm) $M^{-1}cm^{-1}$ for U(VI) and Pu(V) ions, respectively. The measured LOD values are about 30 times more sensitive when compared to those achievable by using a conventional quartz cell with an optical path length of 1.0 cm. As an application with an enhanced sensitivity, a quantitative analysis for micromolar concentrations of Pu(V) has been performed to decrease the uncertainty in the formation constant of the Pu(VI)-OH complex.

  • PDF

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

A Study on the Discrepancies of Gas Measurement and the Solution Measures between Suppliers and Consumers in South Korea (도시(都市)가스 계량(計量) 편차(偏差) 및 해소방안(解消方案)에 관(關)한 소고(小考))

  • Park, Sang-Chul;Bang, Sun-Hyuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • KOGAS, established in 1983 by law to ensure stable gas supply to the public, is responsible for the wholesale distribution to 30 city gas companies that deal with the retail distribution of natural gas in their geographic areas. The gas imported by KOGAS is measured by checking the level difference of LNG shipped in tankers before and after unloading. The analysis of gas composition is essential because the imported gas price is determined by its calorific value. The turbine meter is widely used for measuring the gas sold to city gas companies. Unlike the metering system for power plants, there is no gas chromatograph since the custody transfer of gas to the city gas companies is not billed by calorific value, but by volume basis. The gas quantity that a city gas company has bought from KOGAS is not equal to the quantity that the company sold to its customers. There have been some discrepancies between the wholesale gas meter readouts and retail ones due to some inherent errors of meters and some operational issues of the meters. This paper investigates the controversies regarding the real quantity of gas between distributors and consumers. It will discus and suggest desirable policies, both technically and economically, in order to solve the discrepancies of gas measurement.

Indices for Quality Evaluation by Physicochemical and Chemoenzymatic Method in Red seabream, Pagrus major (물리 및 효소화학적 방법에 의한 참돔, Pagrus major의 품질판정 지표 설정)

  • 심길보;배진한;정호진;여해경;김태진;조영제
    • Journal of Aquaculture
    • /
    • v.17 no.3
    • /
    • pp.228-232
    • /
    • 2004
  • This study evaluates red seabream quality using physicochemical and chemoenzymatic indices. Breaking strength was correlated with moisture content and lipid content of red seabram by a precedent experiment. Moisture content (X$_1$), lipid content (X$_2$) and breaking strength (Y) were optimized with multiple regression as, Y= -2.53539+0.05544X$_1$-0.00161X$_2$. To test the equation, red seabream (n=13) were randomly purchased and measured moisture content, lipid content and breaking strength. The calculated breaking strength using the equation was similar to breaking strength measured using Rheo meter. Adenylate energy charge (AEC), a general biochemical index of stress, values of all sample were higher than 0.8 expect two fish. Fish's condition was a good. The equation developed in this study predicts breaking strength with moisture and lipid content measured. Moreover the equation may be used in grading cultured red seabream with calculated breaking strength. Grade according to breaking strength, when it came to over 1.4 kg, was measured as high grade; when it came to below 1.2 kg, was measured as low grade. Grade according to AEC, when it came to over 0.8, was measured as high grade.

The consideration about the shielding effect of LEDITE (LEDITE를 이용한 방사선 차폐시설에 관한 고찰)

  • Min Je-soon;Lee Je-hee;Park heung-deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • The concrete is usually used to build a radiation therapy facility and the enough concrete thickness for high energy x-ray beam is about 1 meter. But if the space is not enough to build a radiation therapy facility with concrete, the substitute for concrete is needed, and the Ledite can be a good substitute for concrete. In this study, we compared the Ledite with the concrete. The comparing list are the needed shielding thickness, the period of construction and the cost.

  • PDF

A Study of Roughness Measurement of Rock Discontinuities Using a Confocal Laser Scanning Microscope (콘포컬 레이저 현미경을 이용한 불연속면의 거칠기 측정 연구)

  • Byung Gon Chae;Jae Yong Song;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.405-419
    • /
    • 2002
  • Fracture roughness of rock specimens is observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wave length of laser is 488 nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The function of laser reflection auto-focusing enables us to measure line data fast and precisely. The system improves resolution in the light axis (namely z) direction because of the confocal optics. Using the CLSM, it is Possible to measure a specimen of the size up to $10{\;}{\times}{\;}10{\;}cm$ which is fixed on a specially designed stage. A sampling is managed in a spacing $2.5{\;}\mu\textrm{m}$ along x and y directions. The highest measurement resolution of z direction is $10{\;}\mu\textrm{m}$, which is more accurate than other methods. Core specimens of coarse and fine grained granite are provided. Fractures are artificially maneuvered by a Brazilian test method. Measurements are performed along three scan lines on each fracture surface. The measured data are represented as 2-D and 3-D digital images showing detailed features of roughness. Line profiles of the coarse granites represent more frequent change of undulation than those of the fine granite. Spectral analyses by the fast Fourier transform (FFT) are performed to characterize the roughness data quantitatively and to identify influential frequency of roughness. The FFT results suggest that a specimen loaded by large and low frequency energy tends to have high values of undulation change and large wave length of fracture roughness.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

Separation Permeation Characteristics of N2-O2 Gas in Air at Cell Membrane Model of Skin which Irradiated by High Energy Electron (고에너지 전자선을 조사한 피부의 세포막모델에서 공기 중의 O2-N2 혼합기체의 분리투과 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • The separation permeation characteristics of $N_2-O_2$ gas in air at cell membrane model of skin which irradiated by high energy electron(linac 6 MeV) were investigated. The cell membrane model of skin used in this experiment was a sulfonated polydimethyl siloxane(PDMS) non-porous membrane. The pressure range of $N_2$ and $O_2$ gas were appeared from $1kg_f/cm^2$ to $6kg_f/cm^2$. In this experiment(temperature $36.5^{\circ}C$), the permeation change of $N_2$ and $O_2$ gas in non-porous membrane by non-irradiation were found to be $1.19{\times}10^{-4}-2.43{\times}10^{-4}$, $1.72{\times}10^{-4}-2.6{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. That of $N_2$ and $O_2$ gas in non-porous membrane by irradiation were found to be $0.19{\times}10^{-4}-0.56{\times}10^{-4}$, $0.41{\times}10^{-4}-0.76{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. The irradiated membrane was significantly decreased about 4-10 times than membrane which was not irradiated. And ideal separation factor of $N_2$ and $O_2$ gas by non-irradiation was found to be from 1.32 to 0.42 and that of $N_2$ and $O_2$ gas by irradiation was found to be from 0.237 to 0.125. The irradiated membrane was significantly decreased about 4-5 times than membrane which was not irradiated. When the operation change(cut) and pressure ratio(Pr) by non-irradiation were about 0, One was increased to the oxygen enrichment and the other was decreased to the oxygen enrichment. The irradiated membrane was significantly decreased about 4-19 times than membrane which was not irradiated. As the pressure of $N_2$ and $O_2$ gas was increased, the selectivity was decreased. As separation permeation characteristics of $N_2-O_2$ gas in cell membrane model of skin were abnormal, cell damages were appeared at cell.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.