• Title/Summary/Keyword: energy gap

Search Result 1,662, Processing Time 0.03 seconds

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Electrical Properties of Al3+ and Y3+ Co-doped SnO2 Transparent Conducting Films (Al3+와 Y3+ 동시치환 SnO2 투명전극 박막의 전기적 특성)

  • Kim, Geun-Woo;Seo, Yong-Jun;Sung, Chang-Hoon;Park, Keun-Young;Cho, Ho-Je;Heo, Si-Nae;Koo, Bon-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.805-810
    • /
    • 2012
  • Transparent conducting oxides (TCOs) have wide range of application areas in transparent electrode for display devices, Transparent coating for solar energy heat mirrors, and electromagnetic wave shield. $SnO_2$ is intrinsically an n-type semiconductor due to oxygen deficiencies and has a high energy-band gap more than 3.5 eV. It is known as a transparent conducting oxide because of its low resistivity of $10^{-3}{\Omega}{\cdot}cm$ and high transmittance over 90% in visible region. In this study, co-doping effects of Al and Y on the properties of $SnO_2$ were investigated. The addition of Y in $SnO_2$ was tried to create oxygen vacancies that increase the diffusivity of oxygen ions for the densification of $SnO_2$. The addition of Al was expected to increase the electron concentration. Once, we observed solubility limit of $SnO_2$ single-doped with Al and Y. $\{(x/2)Al_2O_3+(x/2)Y_2O_3\}-SnO_2$ was used for the source of Al and Y to prevent the evaporation of $Al_2O_3$ and for the charge compensation. And we observed the valence changes of aluminium oxide because generally reported of valence changes of aluminium oxide in Tin - Aluminium binary system. The electrical properties, solubility limit, densification and microstructure of $SnO_2$ co-doped with Al and Y will be discussed.

Growth of CdS Single Crystal as Photoconductor and Its Physical Characteristics (광전도체의 CdS 단결정 성장과 물리적 특성)

  • Jeong, T.S.;Yu, P.Y.;Shin, Y.J.;Shin, H.K.;Kim, T.S.;Jeong, C.H.;Lee, H.;Shin, Y.S.;Hong, K.J.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.109-115
    • /
    • 1993
  • A CdS single crystal was grown by using sublimation method. Lattice constants, $a_{o}$ and $c_{o}$, obtained by using extrapolation were $4.131{\underline{8}}{\AA}$ and $6.712{\underline{2}}{\AA}$, respectively. The carrier density was${\sim}10^{23}m^{-3}$ and the mobility was $2.93{\times}10^{-2}m^{2}$/V sec from measured Hall data at room temperature. The mobility has a increasing tendency in proportion to $T^{1/2}$ from 33 K to 150 K and a decreasing tendency in proportion to $T^{-2}$ from 180 K to room temperature. The short wavelength band peak measured from photocurrent was due to intrinsic transition, and the energy value of this peak was equal to the energy band gap of CdS photoconductor.

  • PDF

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

Interfacial disruption effect on multilayer-films/GaN : Comparative study of Pd/Ni and Ni/Pd films

  • 김종호;강희재;김차연;전용석;서재명
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.113-113
    • /
    • 2000
  • 직접천이형 wide band gap(3.4eV) 반도체중의 하나인 GaN를 청색 및 자외선 laser diode, 고출력 전자장비 등으로 응용하기 위해서는 낮은 접합저항을 갖는 Ohmic contact이 선행되어야 한다. 그러나 만족할만한 p-type GaN의 Ohmic contact은 아직 실현되고 있지 못하며, 이는 GaN와 접합 금속과의 구체적인 반응의 연구를 필요로 한다. 본 연구에서 앞서 Pt, Pt, Ni등의 late transition metal을 p-GaN에 접합시킨 결과 이들은 접합 당시 비교적 평탄하나 후열 처리과정에서 비교적 낮은 온도에서 기판과 열팽창계수의 차이로 인하여 평탄성을 잃어버리면서 barrier height가 증가한다는 사실을 확인하였다. 따라서 본 연구에서는 이러한 열적 불안정성을 극복하기 위하여 Ni과 Pd를 차례로 증착하고 가열하면서 interfacial reaction, film morphology, Fermi level의 움직임을 monchromatic XPS(x-ray photoelectron spectroscopy) 와 SAM(scanning Auger microscopy) 그리고 ex-situ AFM을 이용하여 밝히고자 하였다. 특히 후열처리에 의한 계면 반응에 수반되는 구성 금속원소 간의 합금현상과 금속 층의 평탄성이 밀접한 관계가 있다는 것을 확인하였다. 이러한 합금과정에서 나타나는 금속원소들의 중심 준위의 이동을 체계적으로 규명하기 위해서 Pd1-xNix와 Pd1-xGax 합금들의 표준시료를 arc melting method로 만들어 농도에 따른 금속원소들의 중심 준위의 이동을 측정하여, Pd/Ni/p-GaN 및 Ni/Pd/p-GaN 계에서 열처리 온도에 따른 interfacial reaction을 확인하였다. 그 결과 두 계가 상온에서 nitride 및 alloy를 형성하지 않고 고르게 증착되고, 열처리 온도를 40$0^{\circ}C$에서 $650^{\circ}C$까지 증가시킴에 따라 계면반응의 부산물인 metallic Ga은 증가하고 있으마 nitride는 여전히 형성되지 않는 것을 확인하였다. 증착당시 Ni이 계면에 있는 Pd/Ni/p-GaN의 경우에는 52$0^{\circ}C$까지의 열처리에 의하여 Ni과 Pd가 골고루 섞이고 그 평탄성도 유지되고 barier height의 변화도 없었다. 더 높은 $650^{\circ}C$ 가열에 의해서는 surface free energy가 작은 Ga의 활발한 편석 현상으로 인해 표면은 Ga이 풍부한 Pd-Ga의 합금층으로 덮이고, 동시에 작은 pinhole들이 발생하며 barrier height도 0.3eV 가량 증가하게 된다. 반면에 증착당시 Pd이 계면에 있는 Ni/Pd/p-GaN의 경우에는 40$0^{\circ}C$의 가열까지는 두 금속이 그들 계면에서부터 섞이나, 52$0^{\circ}C$의 가열에 의해 이미 barrier height가 0.2eV 가량 증가하기 시작하였다. 더 높은 $650^{\circ}C$가열에 의해서는 커다란 pinhole, 0.5eV 가량의 barrier height 증가, Pd clustering이 동시에 관찰되었다. 따라서 Ni과 Pd의 일함수는 물론 thermal expansion coefficient가 거의 같으며 surface free energy도 거의 일치한다는 점을 감안하면, 이렇게 뚜렷한 열적 안정성의 차이는 GaN와 contact metal과의 반응시작 온도(disruption onset temperature)의 차이에 기인함을 알 수 있었다. 즉 계면에서의 반응에 의해 편석되는 Ga에 의해 박막의 strain이 이완되면, pinhole 등의 박막결함이 줄어 들고, 이는 계면의 N의 out-diffusion을 방지하여 p-type GaN의 barrier height 증가를 막게 된다.

  • PDF

The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory (실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구)

  • Kim, Taeyoon;Kwon, Yongju;Kang, Choonghyun;Kim, Jongyoung;Shin, Hyun Suk;Kwon, Soonchul;Cha, Sung Min
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2018
  • In this study, we analyzed the removal efficiency of ammonia nitrogen and phosphate dependant on the column depths using various absorbents such as zeolite silica sand, and activated carbon through the column test. In addition, we analyzed electrochemical adsorption behaviors of ammonia nitrogen and phosphate through the quantum mechanical calculation based on density functional theory calculation. Experimental results represent the removal efficiency of ammonia nitrogen and phosphate are zeolite > activated carbon > silica sand, and activated carbon > zeolite > silica sand, respectively. Zeolite shows high adsorption property for ammonia nitrogen over 90%, regardless of the column depth, while activated carbon exhibits high adsorption property for both ammonia nitrogen and phosphate as the column depth for filter media increases. Theoretical findings using DFT calculation for the adsorption behaviors of adsorbents (activated carbon and silica sand) and nutrients ($PO_4{^{3-}}$, $NH_4{^{+}}$) show that activated carbon represented narrower HOMO-LUMO band gap with high adsorption energy, and even more favorable environment for electron adsorption than silica sand, which leads to the effective removal of nutrients.

Synthesis and Photocatalytic Activity of WO3-xFx Photocatalysts Using a Vapor Phase Fluorination (기상 불소화법을 이용한 WO3-xFx 광촉매의 합성 및 광분해 특성)

  • Lee, Hyeryeon;Lim, Chaehun;Lee, Raneun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.632-639
    • /
    • 2021
  • In this research, fluorine doping was performed to enhance the photocatalytic activities of WO3 which were measured using methylene blue dye. WO3-xFx photocatalyts were prepared by a vaper phase fluorination during a sintering for preparing WO3 photocatalysts from a WCl6 precursor. The bandgap energy of WO3 photocatalysts decreased from 2.95 eV to 2.54 eV, and the oxygen vacancies site increased by about 55% after fluorine doping. In addition, the initial degradation efficiency of methylene blue showed that the fluorine doped sample showed a 6-fold increase in photocatalytic activities from 10% to 60% compared to that of the untreated sample. It is believed that fluorine is doped to reduce the band gap of photocatalysts, enabling the catalytic activity with low energy, and that oxygen vacancies-generated surface defects increase the visible light absorption region of WO3 photocatalysts, thereby increasing photocatalytic activity. In this study, it was confirmed that fluorine-doped WO3-xFx photocatalysts with an excellent photocatalytic activity can be manufactured easily using a one-step vaper phase fluorination that does not require a post-treatment process.

Adsorptive Removal of TBM and THT Using Ion-exchanged NaY Zeolites (이온교환된 NaY 제올라이트를 이용한 TBM와 THT의 흡착제거)

  • Jung, Gap-Soon;Lee, Seok-Hee;Cheon, Jae-Kee;Choe, Jae-Wook;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) that were widely used sulfur odorants in pipeline natural gas was studied using various ion-exchanged NaY zeolites at ambient temperature and atmospheric pressure. In order to improve the adsorption ability, ion exchange was performed on NaY zeolites with alkali metal cations of $Li^+,\;Na^+,\;K^+$ and transition metal cations of $Cu^{2+},\;Ni^{2+},\;Co^{2+},\;Ag^+$. Among the adsorbents tested, Cu-NaY and Ag-NaY showed good adsorption capacities for THT and TBM. These good behaviors of removal of sulfur compound for Cu-NaY and Ag-NaY zeolites probably was influenced by their acidity. The adsorption capacity for THT and TBM on the best adsorbent Cu-NaY-0.5, which was ion exchanged with 0.5 M copper nitrate solution, was 1.85 and 0.78 mmol-S/g at breakthrough, respectively. It was the best sulfur capacity so far in removing organic sulfur compounds from fuel gas by adsorption on zeolites. While the desorption activation energy of TBM on the Cu-NaY-0.5 was higher than NaY zeolite, the difference of THT desorption activation energy between two zeolites was comparatively small.

MOCVD Growth and Characterization of Heteroepitaxial Beta-Ga2O3 (MOCVD 성장법을 이용한 Beta-Ga2O3 박막의 헤테로에피택시 성장 특성)

  • Jeong Soo Chung;An-Na Cha;Gieop Lee;Sea Cho;Young-Boo Moon;Myungshik Gim;Moo Sung Lee;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this study, we investigated a method of growing single crystal 𝛽-Ga2O3 thin films on a c-plane sapphire substrate using MOCVD. We confirmed the optimal growth conditions to increase the crystallinity of the 𝛽-Ga2O3 thin film and confirmed the effect of the ratio between O2 and Ga precursors on crystal growth on the crystallinity of the thin film. The growth temperature range was 600~1100℃, and crystallinity was analyzed when the O2/TMGa ratio was 800~6000. As a result, the highest crystallinity thin film was obtained when the molar ratio between precursors was 2400 at 1100℃. The surface of the thin film was observed with a FE-SEM and XRD ω-scan of the thin film, the FWHM was found to be 1.17° and 1.43° at the and (${\bar{2}}01$) and (${\bar{4}}02$) diffraction peaks. The optical band gap energy obtained was 4.78 ~ 4.88 eV, and the films showed a transmittance of over 80% in the near-ultraviolet and visible light regions.

Eco-Friendly Photocatalytic Transformation of Greenhouse Gas CO2 into Precious CH4 Fuel via Cu-Deposited Black TiO2 under Simulated Sunlight Irradiation

  • Dong Jin Kim;Hyun-Cheol Lee;Seung-Ho Shin;Wan-Kuen Jo
    • Journal of Environmental Science International
    • /
    • v.33 no.9
    • /
    • pp.633-643
    • /
    • 2024
  • Hereunder, the eco-friendly photocatalytic CO2 transformation capability of Cu-deposited black TiO2 (Cu/BTiO2) was evaluated to investigate if this photocatalyst proceeds the thermodynamically- and kinetically-satisfactory CO2 transformation into CH4. The clustered Cu-deposited BTiO2 (Cu/BTiO2) and Cu/BTiO2 architectures revealed noticeable photocatalytic CO2 transformation abilities, whereas the pristine TiO2 and BTiO2 catalysts displayed no significant photocatalytic CO2 transformation abilities. Especially, the photocatalytic CO2 transformation rates of a representative Cu/BTiO2 architecture were 104, 209, 272, 322, and 361 μmol/g at the irradiation times of 2, 4, 6, 8, and 10 h, respectively, while the photocatalytic CO2 transformation rates of Cu/BTiO2 were 61, 139, 217, 270, and 309 μmol/g at the same irradiation times, respectively. The promoted photocatalytic CO2 transformation ability of the Cu/BTiO2 architecture was assigned to the excellent electron-hole separation tendency, which was verified by the photoluminescence analysis. The composition ratio of Cu incorporated into BTiO2 in the Cu/BTiO2 architectures was crucial in CH4 generation. In addition, the Cu/BTiO2 architecture displayed eminent photodurability, which was verified by the consecutive experiment cycle, and the mechanistic process for CO2 transformation into CH4 via the Cu/BTiO2 architecture was established. The electronic framework of the Cu/BTiO2 architecture was established on the basis of its band gap and valence band value. Conclusively, the Cu/BTiO2 architecture is an outstanding tool for thermodynamically- and kinetically-satisfactory photocatalytic CO2 transformation into CH4 that application under simulated sunlight irradiation.